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Randomness

Pseudorandom Functions (PRFs) 
 all functions that map from  to 

How large is this set of functions? For any bit in the input string, we can apply an 
Identity function, a NOT function ( ), a ONE function ( ), or a ZERO function ( ). 
Therefore a function in this space is just a sequence of these smaller function 
components such that we accumulate  of them, one for each bit. This unique 
ordering and arrangement of the sub functions is what comprises the function 
table.

Input Output

 possibilities

 possibilities

 possibilities

 possibilities

Func =n {0, 1}n {0, 1}n

¬ 1 0

n

0...000 2n

0...001 2n

0...010 2n

0...100 2n

... ...
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Input Output

 possibilities

Because there are  ways to configure an  bit string, and each of these can be 
transformed into any other  bit string, the size of the function space is as follows:

 is a pseudorandom function if  for uniform key  is 
indistinguishable from a uniform function .

In this mode of thinking, an attacker can probe however much they like, but they 
should not be able to distinguish whether they are given a box with a uniformly 
chosen key or an actual function ; both of which are chosen uniformly and at 
random. 

Pseudorandom Permutations (PRPs)
Let .  is a PRP if it is a bijection, meaning that the inverse ( ) 
exists.

Let  be the set of permutations. What is ?

For something to be a ‘permutation’, we disallow duplicate values in out output 
function. Therefore the number of possibilities for each entry in the list of all 
possible bit strings actually dwindles over time, leading to possibilities rather 
than the much larger set of possibilities in the set of all functions.

Pseudorandom Generators (PRGs)
Access to a PRF  immediately implies the access to a PRG , simply because 
the only requirement for a PRG is that it is indistinguishable from a PRF. In 
practice though, we don’t have usually use PRFs, only PRGs that are 
indistinguishable from them. The ontology of true PRGs is still a contested topic. If 
PRGs do actually exist, this would imply that . In practice we either 
simply assume that PRGs exist, or construct valid PRGs on the backs of weaker 
assumptions. 

Probabilities

Events

1...111 2n

2n n

n

∣Func ∣ =n (2 ) =n 2n 2n2
n

F Fk k ∈ {0, 1}n

f ∈ Funcn

f

f ∈ Funcn f f−1

Perm ⊂n Funcn ∣Perm ∣n

2 !n

F G

P = NP
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An Event is a particular occurrence in some experiment. e.g., the event that 
random variable X takes values x.

: probability of event E

Conditional Probability
Probability that one event  occurs, given that some other event occurred.

Bayes Theorem
Relatedly, Bayes Theorem shows us how to rearrange such probabilities:

Independence
Two random variables  are independent iff

for all 

In other words, the probability of  having value  is the same, regardless of 
’s value

Law of Total Probability
Say that  are a partition of all possibilities. Then for any :

Negligible Probabilities (  s)
 is negligible for every polynomial  there is an  

such that for all  it holds that . Typically, we denote arbitrary 

negligible functions as ‘ ’s.

Let and  be negligible functions. It follows that

Defining  implies a third negligible function.

Similarly,  also implies a negligible function for any 
Polynomial 

Pr[E]

A B

Pr[A∣B] =
Pr[B ]

Pr[A∧B ]

Pr[A∣B] = Pr[B∣A] ∗
Pr[B ]
Pr[A]

X,Y

x,y : Pr[X = x∣Y = y] = Pr[X = x]

X x

Y

E , ...E1 n A

Pr[A] = Pr[A∧∑i E ] =i Pr[A∣E ] ∗∑i i Pr[E ]i

negl
function f : N→ R ⟺ p N

n < N f(n) <
p(n)
1

negl

negl1 negl2

negl ←3 negl +1 negl2
negl ←4 p(n) ∗ negl1
p(n)
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Group Theory and Related Math

Abelian Groups
An Abelian Group is a set  and a binary operation  defined on  such that the 
following properties hold.

Closure: Given a pair of elements  ;  is also in 

Identity: There is an element  such that for all other , 
.  

Inverse: Every element  has an inverse  such that 
, meaning they produce the Identity.

Associativity for all  ; 

Communativity for all  ; 

Cyclic Groups
Let  be a finite group of order  and let  be some element of . We can now 
define a cyclic group by using  as a “generator” and checking if it is able to 
populate . 

We write the generated group as . We expect 
that  will simply produce  since we are generating . Values may 
begin to loop before each power is represented. It’s only when each power 
produces a distinct value that  produces a set of the expected order, which 
then tells us that  is a generator and produces a cyclic group. Cyclic groups can 
have more than one group.

This operation can be performed both in groups under addition modulo  and 
groups under multiplication modulo .

When an expression regarding a given group  is written , we define  as 
the generator and  as the index within the group. 

Example 1: Given , find :

Example: Given , find :

   

G ∘ G

g,h ∈ G g ∘ h G

e ∈ G g ∈ G e ∘ g = g

g ∈ G h ∈ G h ∘ g = g ∘
h = e

f, g,h ∈ G f ∘ (g ∘ h) = (f ∘ g) ∘ h

g,h, ∈ G g ∘ h = h ∘ g

G m g G

g

G

< g >= {g , g , g ,…, g }0 1 2 m−1

gm g0 mod m

< g >
g

N

N

G log ig g

i

Z12 log 55

< 5 >= {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} ∴ log 5 =5 1

Z11∗ log 98

< 8 >= {1, 8, 9, 6, 4, 10, 3, 2, 5, 7} ∴ log 9 =8 2
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Relevant Theorems:

Any group of prime order is cyclic, and every non-identity element is a 
generator

If  is prime, then  is cyclic, noting that the order of said group is 

Diffie-Hellman Problems
Based on our understanding of cyclic groups and associated notation, we 
describe two interesting problems. It can be demonstrated that a proof of one 
version’s ease or difficulty extends to the other’s.

Given a cyclic group  and a generator , define:

Computational Diffie-Hellman Problem (CDH):

Given , find the result

Decisional Diffie-Hellman Problem (DDH):

Given the result , find originating values

When selecting a group  to compute on, we generally search for groups that are 
hard to solve for in cryptographic contexts. For example,  is easy for any  
and any selected generator . Therefore for our purposes we select prime-order 
groups. These have the added benefit that every element except for the identity is 
a generator!

Example:

Select a prime-order subgroup of  where  is prime

E.g. let  for  prime

So  has order 

Take the subgroup of powers ie

 is a group

p Zp∗ p − 1

G g

DH (h ,h ) =g 1 2 DH (g , g ) =g
x y g =xy h =1

y
h2
x

DH (h ,h )g 1 2

DH (g , g )g
x y

G

ZN N

g

Zp∗ p

p = kq+ 1 p, q

Zp∗ p − 1 = kq

kth

G = {[xk mod p]∣x ∈ Z } ⊂p
∗ Zp∗

G
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Can show that it has order 

Since  is prime,  must be cyclic

Group Order
The order of an Abelian Group is the number of elements contained within it. Note 
that this means each element tallied must conform to the properties of Abelian 
Groups. 

For groups where , their order is simply . 

For groups where , it is less clear. For these, we denote their 
order as .

If  is prime, then we know all elements of  are Invertible , 
therefore .

If  for  distinct primes, then the invertible elements are the 
integers from  to  that are not multiples of  or . Therefore 

.

Note that assuming we have an efficient algorithm for Invertibility and 
access to all potential members of the group, we can simply traverse 
each element in the generated group and ask if it is Invertible, which is a 
required property of a true Abelian Group.  Tallying the invertible 
elements reveals the true Order.

Group Isomorphisms
Let  be groups with respect to the operations  respectively. A 
function  is an isomorphism from  to  if:

 is a bijection / permutation and

For all  we have 

If there exists an isomorphism that satisfies these conditions we state that the two 
groups are isomorphic and write .

In essence, all we are doing is renaming elements.

Chinese Remainder Theorem

(p − 1)/k = q

q G

∘ = + mod N ∣Z ∣ =N N

∘ = ∗ mod N
∣Z ∣ =N
∗ ϕ(N)

N ZN∗ mod N
ϕ(N) = N − 1

N = pq p, q
1 N − 1 p q

ϕ(N) = (p − 1)(q− 1)

G,H ∘ , ∘ ,G H
f : G→ H G H

f

g , g ∈1 2 G f(g ∘1 G g ) =2 f(g ) ∘1 H f(g )2

G ≃ H



CMSC456 Course Material 7

The Chinese Remainder Theorem states that for some  where  
are relatively prime, we can conclude that 

Moreover, let  be the function that maps elements  to 
pairs  where  and  defined 
by

By this definition,  serves as an isomorphism in both the cases of  and .

Greatest Common Divisor (GCD)
Given two numbers  where , we determine the largest value that 
evenly divides both  and  and denote it . In the process of solving for , we 
can also find the factors of  and  that produce  such that . 
These values will always exist. 

Euclidean Algorithm:

If  is , we know that we are done. Otherwise, we recurse, using  in 
place of  and  in place of . When  reaches ,  will by definition be the GCD.

let EuclideanGCD (a: int) (b: int) = 
  (* This is the base case *) 
  if a == 0 then  
    (b, 0, 1) 
  (* Otherwise *) 
  else 
  (* Use the remainder to compute recursively *) 
    let (d, X, Y) = EuclideanGCD (b % a) a in 
  (* Rewrite X and Y *) 
  (d, Y - floor(b / a) * X, X)

Modular Invertibility

N = pq p, q > 1

Z ≃N Z ×p Zq
and

Z ≃N
∗ Z ×p

∗ Zq∗

f x ∈ {0,…,N − 1}
(x ,x )p q x ∈p {0,…,p − 1} x ∈q {0,…, q− 1}

f(x) =
def
([x mod p], [x mod q])

f ZN∗ ZN

a, b ∈ Z a ≥ b

a b d d

a b d d = Xa+ Yb

a 0 b mod a
a a b a 0 b



CMSC456 Course Material 8

An integer  is Invertible modulo  if there exists an integer  such that 
. Therefore to determine if integer  is Invertible, we simply need to 

find a value  which satisfies this condition. The resulting value  is written 
.

We can test for Invertibility succinctly by asserting that  is valid 
 , meaning that  and  share no common factors.

Division Mod N
If an expression is written , it is only valid so long as we know  is 
Invertible . To evaluate, first solve  then plug into 

. 

Modular Exponentiation
If an expression is written  for some base  and an integer 
exponent , we must solve it in a clever way, as we expect  to be a large 
value. By solving it recursively and applying a modulo  at each step of the 
function, we can keep the values we are working with comparatively small.

By Hand Algorithm:

Note that if we can solve  for the modulo , the exponent  can be 
rewritten as , meaning we can rewrite our full expression as 

. If this produces an exponent that is easier to work with 
it can make the process way easier!

Naïve Algorithm:

let rec modExp_naive (a: int) (b: int) (n: int) =  
 (* This is the base case *) 
  if b == 0 then 
  (* a^0 = 1 in all cases *) 
  1 
  else 
  (* a * [a^(b-1) mod N] mod N *) 
  (a * (modExp_naive a (b-1) n)) mod n

b N a ab

mod N = 1 b

a a a =
[b−1 mod N]

[b−1 mod N]
⟺ GCD(b,N) = 1 b N

[c/b mod N] b

mod N x = [b−1 mod N]
[cx mod N]

[c/b mod N]{
[c ∗ [b mod N] mod N]−1

Error
GCD(b,N) = 1
GCD(b,N) = 1

[ab mod N] a ∈ ZN
b > 0 b

N

ϕ(N) N b

[b mod ϕ(N)]
[a[b mod ϕ(N )] mod N]
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This code is based on the following recurrence:

Intelligent Algorithm:

let rec modExp_smart (a: int) (b: int) (n: int) =  
 (* This is the base case *) 
  if b == 0 then 
  (* a^0 = 1 in all cases *) 
  1 
  else 
    (* If b is even *) 
    if b mod 2 == 0 then 
      (* (a^{b/2})^2 mod N *) 
      let sub = modExp_smart a (b / 2) n in 
      (sub * sub) mod n 
    else 
      (* a * (a^{(b-1)/2})^2 mod N *) 
      let sub = modExp_smart a ((b - 1) / 2) n in 
      (a * sub * sub) mod n

This code is based on the following recurrence:

Security Metrics

A Note on Evaluating Attackers
When running an attacker, the exact output for a given set of messages is not 
entirely relevant. Instead, we care about the probability that running the attacker 

 produces a  (successful attack) rather than a  (failed attack). For an attacker 
to be viable, we must showcase that this probability is greater than  
(random) for selecting the bit  of the encoded message , plus a negl. 
Formally, an attacker is successful iff .

Perfect Secrecy

[ab mod N] = a ∗ ab−1 mod N

[ab mod N] = {
(a ) mod N2

b 2

a ∗ (a ) mod N2
b−1 2

b mod 2 = 0
b mod 2 = 1

A 1 0
Pr[ ]2

1

b mb

Pr[A = 1] > Pr[ + 2
1 negl]
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For an encryption scheme to be ‘perfectly secret’, observing a given ciphertext 
should reveal no information at all about the plaintext. Formally, this means that 
the likelihood of guessing the correct plaintext is unchanged by observing the 
ciphertext. 

One major limitation of this definition is that it requires the key  for any given 
scheme attempting perfect secrecy to contain the same quantity of information as 
the message , that is, to have the same length. . To showcase that a 
scheme does not comply with perfect security, one simply needs to showcase that 
observing the ciphertext changes the likelihood with which you are able to guess 
the plaintext.

Malleability
Malleability refers to a scheme’s ability to be resistant to ciphertext modifications 
and the ability of adversaries to produce expected results in a decrypted plaintext. 
An example of this is the One-Time Pad, which is extremely malleable, allowing 
for attackers to make deterministic alterations to what will eventually become the 
plaintext, even if perfect secrecy is maintained.

Integrity
Integrity refers to a scheme’s ability to verify that a given ciphertext was actually 
sent by who we believe it was. Violating this principle only requires that an 
adversary gets a recipient to accept a message that was never actually sent by 
an honest party.

EAV-Security
Highly related to Perfect Secrecy,  EAV-Security specifies a standard of security 
for protecting against Eavesdroppers who are able to listen in on the 
communication channel and observe transmitted ciphertexts. To showcase that a 
scheme is not EAV-Secure, one needs only demonstrate that it is not perfectly 
secret across an arbitrary quantity of messages. For example, a single use One-
Time Pad is perfectly EAV-Secure, but this security is broken if the key is ever 
reused.

CPA-Security

P [M = m ∣ C = c] = P [M = m]

k

m ∣k∣ = ∣m∣
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By definition stronger in definition than EAV-Security, CPA-Security allows for the 
attacker to choose their own plaintexts, sending these plaintexts through the 
encryption algorithm and witnessing the ciphertexts they produce. We evaluate 
the security of the scheme by asking if this extra information gives the attacker an 
upper hand in decrypting the messages.

Attacker:

1. 

2.  interacts with an encryption oracle , outputting  where 
.

3. . give  to 

4.  can continue to interact with 

5.  outputs ;  succeeds if  and experiment evaluates to  in this 
case

CCA-Security
By definition stronger in definition than both EAV-Security and CPA-Security, 
CCA-Security allows the attack to choose their own plaintexts, witness the 
resulting ciphertexts, and decrypt ciphertexts of their chosing, witnessing the 
resulting decodings. The one exception occurs with the challenge ciphertext being 
presented to the attacker , as being allowed to decrypt it outright would defeat 
the point of the exercise.

Attacker:

1. 

2.  interacts with an encryption oracle  and decryption oracle 
, outputting  where .

3. . give  to .

4.  can continue to interact with  and 

PrivK (n) :A,Π
CPA

k ←Gen(1 )n

A(1 )n Enc ()k m ,m0 1

∣m ∣ =0 ∣m ∣1

b← {0, 1},  c← Enc (m )k b c A

A Enc ()k

A b’ A b = b’ 1

A

PrivK (n) :A,Π
CCA

k ←Gen(1 )n

A(1 )n Enc ()k

Dec ()k m ,m0 1 ∣m ∣ =0 ∣m ∣1

b← {0, 1},  c← Enc (m )k b c A

A Enc ()k Dec ()k
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5.  outputs ;  succeeds if  and experiment evaluates to  in this 
case

Unforgeability
We define unforgeability only in a formal context, one that is decided by the 
evaluation of this experiment. Essentially,  we are checking if the attacker  is 
able to, given access to the encryption oracle , create a new ciphertext that 
is successfully decrypted without error and that we never fed the encryption 
oracle.

1. 

2.  interacts with an encryption oracle , eventually outputting 
ciphertext .

3.  and let  denote the set of all queries that  submitted to the 
encryption oracle.

4. iff  and  output , otherwise output .

A private-key encryption scheme  is unforgeable if for all PPT adversaries , 
there is a negligible function negl such that:  

.

Authenticated Encryption
A scheme is said to possess Authenticated Encryption (AE) if it posessses both 
CCA-Security and Unforgeability.

Probabilistic Polynomial Time (PPT)
A scheme is secure in the context of PPT if an attacker succeeds in breaking the 
scheme with at most negligible probability. By manipulating the security 
parameter , the scheme designer can alter the probability of breaking the 
scheme and the duration of computation required to achieve that probability. 
Because increasing  increases the compute time for encryption and decryption, 
the value is to be minimized while still protecting against potential threats. 
Approximately, we are looking for probabilities of ( ) for cracking the scheme 
within  years ( ).

A b’ A b = b’ 1

A

Enck

Enc_Forge (n) :
A,Π

k ←Gen(1 )n

A(1 )n Enc ()k

c

m =: Dec(c) Q A

m = ⊥ m ∈/ Q 1 0

Π A

Pr[Enc_Forge (n) =
A,Π 1] ≤

negl(n)

n

n

2−60 ε
200 t
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 Runs in polynomial time there exists a polynomial  
such that for all input  the computation of  terminates within 
at most  steps.

Cryptographic Utilities

Stream Ciphers

Linear Feedback Shift Registers (LFSRs)
Historically used for random number generation, LFSRs are comprised of an 
array of single-bit registers , along with a set of  boolean 
feedback coefficients . The size  of the array is referred to as the 
degree of the LFSR. This specification makes LFSRs extremely hardware 
efficient. After each ‘clock tick’, the value of  is output as  for the th clock 
tick and the states of each register are updated, register  passing its value 
on to register . The initial register  is overwritten using the feedback 
coefficients. 

Note that the superscript  in  represents the clock tick. To describe the way 
each register updates on each clock tick, we write

To denote the outputs of an LFSR as  where , we write

One way to conceptualize this is to realize the first  output bits are the initial 
state of the registers .

function f : N→ R ⟺ ∃c where f(n) < n  for all  nc

algorithm A : ⟺ p

x ∈ {0, 1}∗ A(x)
p(∣x∣)

n s , ..., sn−1 0 n

c , ..., cn−1 0 n

s0 yi i

si+1
si sn−1

t si
t

{
s = si

(t+1)
i

(t)

s = c sn−1
(t+1) ⨁i=0

n−1
i i
(t)

i = 0,…,n− 2

y ,y ,…,0 1 y =i s0
(i)

{
y = si i

(0)

y = c yi ⨁j=0
n−1

j i−n+j

i = 0,…,n− 1
i > n− 1

n

s …s0 n−1
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LFSRs can be used to construct stream ciphers of the form  in an 
organic way- give them an initial state and produce a new value by executing 
a single clock tick.

Note that a degree-  LFSR has at most  possible states that correspond to 
the possible values of each register. A degree-  LFSR will eventually repeat a 
previous state. Once it does, it will then repeatedly cycle through this same set 
of states and their corresponding outputs. 

An LFSR is said to have maximum length if it cycles through all  nonzero 
states before repeating. Note that this is the ideal case.

Key-recovery attacks:

The output of a maximum-length LFSR has good properties, and typically far 
too many possible states to traverse. Despite this, LFSRs are not secure 
stream ciphers. If we assume the feedback coefficients are known to the 
attacker, then the first  bits of output from a degree-  LFSR will reveal the 
initial state of the LFSR, which functions as the key. Once known, all future 
output can be predicted. See formal definition above if confused.

Even if the feedback coefficients are hidden to an attacker, the initial state can 
still be deduced in only  output bits. As before, the first  output bits reveal 
the initial state. Given the next  output bits, we can construct a system of 
equations for which there is only one solution, revealing each feedback 
coefficient.

An example of a simple LFSR

(Init,Next)

n 2n

n

2n−1

n n

2n n

n
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Feedback Shift Registers (FSRs)
FSRs are the product of introducing Nonlinearity to LFSRs. This makes the 
systems less predictable, and more secure. There are multiple approaches for 
introducing this nonlinearity:

Nonlinear feedback: The most apparent way to implement nonlinearity is 
to make the feedback loop nonlinear. Everything is identical to an LFSR, 
except that the new value of the leftmost register  is now determined 
nonlinearly. 

Given some arbitrary nonlinear function  that operates on the collection 
of registers, the FSR is able to generate a new state for . For 
security, we posit that for  to be “balanced”, 

 where the probability is computed over uniformly selected 
states. In practice, we often see the use of ANDs and ORs.

Formally:

Nonlinear output: Rather than updating our new state nonlinearly, we can 
simply determine our output nonlinearly. Here, we denote the function that 
computes the output bit to be  and refer to it as the filter. As before, we 
expect it to be balanced to avoid obvious bias.

Combination generators: By using more than one LFSR, we can 
generate the final output stream by combining the outputs of the individual 
LFSRs in some nonlinear way. The individual LFSRs do not have to be of 
the same degree, and their having this property is actually advantageous 
in achieving maximization. Care must be taken to ensure the combined 
output is balanced, as before. 

y =n c y ⊕n−1 n−1 ⋯⊕ c y0 0

⋮
y =2n−1 c y ⊕n−1 2n−2 ⋯⊕ c y0 n−1

sn−1

g

sn−1
g Pr[g(s ,…, s ) =n−1 0

1] ≈ 1/2

{
s := si

(t+1)
i+1
(t)

s := g(s ,…, s )n−1
(t+1)

n−1
(t)

0
(t)

i = 0,…,n− 2

g
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Trivium is the best example of an FSR used in practice as a stream cipher, 
and is an implementation of a combination generator. Within, we can see 
three couples, nonlinear FSRs that have decrees 93, 84, and 111 respectively. 
The state is the concatenation of the states of these sub-FSRs. In the  
function, Trivium is run for 4 * 288 clock ticks with discarded output to ensure 
its initial state cannot be deduced.

Block Ciphers

Block Ciphers Formal Definition
When a block scheme is in CTR Mode (Counter), XORing takes place after 
encryption via the PRF. The outputs of each block are independent from one 
another. Thus, modifiying the  block of a message  will not modify any 
blocks of the ciphertext seldom .

Init

mn m

cn
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By contrast when in CBC Mode(Cipher Block Chaining), XORing takes place 
prior to encryption via the PRF. The outputs of each block are XORed with the 
input of the subsequent block, meaning that modification to  will modify all 
subsequent blocks  where .

Both of these are CPA-Secure.

Neither of these are CCA-Secure because they are malleable. By changing 
bits in the ciphertext, certain blocks of the decrypted message will become 
random through the inverse function , but others will become predictably 
modified because they are also being ’d with information outside of the 
inverse function.

mn

mx x > n

Fk
−1

⊕
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Cipher Block Chaining Message Authentication Code (CBC-
MAC)

A message,  is input into a function , its ouput is ’d with  before 
 is run through . Once all messages have been run through , its final 

output is , which should prove integrity.

This methodology does not require an IV, unlike CBC-Mode encryption. It is 
deterministic for this reason. CBC-MACs do not need to be probabilistic to be 
secure! Verification can simply be done by re-computing the result.

Note that we explicitly avoid using an  because its use reveals too much 
information to adversaries.

The methodology of  is simply to compare the output of this 
scheme with . As long as  remains secret this is valid.

To ensure the utility of CBC-MAC for arbitrary length messages, we must also 
encode the length of the message (in blocks) as the first block of our CBC. 
This is done at the start of the blocks rather than at the end to ensure 
unforgeability.

m1 Fk ⊕ m2

m2 Fk Fk
t

IV

Vrfy (m, t)k

t k
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Confusion-Diffusion Paradigm
The CDP is, simply, a paradigm for constructing concise and random-looking 
permutations. The goal is to construct a PRP  with a large block length from 
many smaller PRPs  with a smaller block length. 

Through the use of numerous PRPs , the scheme is said to introduce 
confusion into . 

On its own, this definition is not enough. Assuming the input on  is split 
into the  components that will be fed to  sub functions, changes to a single 
component in  will produce predictable changes in . 

Therefore we require an additional step to perform diffusion. In this diffusion 
step, the bits of the output are permuted using a mixing permutation. This 
spreads local change (e.g. change in a single byte) throughout the entirety of 
the output.

In practice, it is the application of the confusion and diffusion steps in 
sequence that is referred to as a ‘round’. As the rounds are applied, the output 
of one becomes the input to the next. Through the application of sufficient 
rounds,  becomes indistinguishable from a PRP.

Substitution-Permutation Networks (SPNs)
SPNs are used to directly implement the Confusion-Diffusion Paradigm. 

F

{f }i

{f }i
F

F (x)k

n n

x F (x)k

F
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For each round:

Key mixing (Confusion): Set , where  is the current round’s 
sub-key.

Substitution (  / -box): Set  where  is the 
th byte of .

Permutation (Diffusion): Permute the bits of  to obtain the output of the 
round.

Finally, perform another Key mixing step such that the final Substitution and 
Permutation processes are not wasted.

There are certain requirements placed on the SPN that are required to 
achieve the desired effect:

1. Changing a single input bit for any given -box changes at least two of 
the resulting output bits.

2. Mixing permutations are designed such that the bits output by any given 
-box affect the input of multiple -boxes in the next round.

The presence of these requirements causes an Avalanche Effect: a single 
permuted bit in the input can be expected to alter half of the output bits. 

An example of a properly constructed 3-round SPN.

x := x⊕ k k

fi S x := S (x )∣∣...∣∣S (x )1 1 n n xi i

x

x

S

S

S
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Feistel Networks
Unlike the S-Boxes used in SPNs, the sub-functions of Feistel Networks do 
not need to be invertible. By consequence, even Hash functions can be used 
in each of the blocks. The goal here, then, is to compose an invertible function 
from non-invertible components. 

For a balanced Feistel Network with -bit block length, the th round function 

 takes as input a sub-key  and an -bit string and generates an -bit 
output. A single master key  can be used to derive each sub-key.

 via 

ℓ i

fî ki ℓ/2 ℓ/2
k

f :i {0, 1} →ℓ/2 {0, 1}ℓ/2 f (R)i =def (k ,R)fî i
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Note that the functions  are public and known- it is only the keys 
used for them that are kept a secret.

At each stage of the network, we solve each half of the network  and 
.

To invert / decrypt, we simply run the output of the network back through- 
but reverse the order of each sub-function . 

This is an example of a 3-round Feistel Network

Attacking Feistel Networks:

In the one round case:

 where  is in some way 
dependent on .

The left half of the output is always the right half of the input, and is 
being XORed with the left half of the input. Simply using the all zero 

fî

Li
Ri

L :=i Ri−1

R :=i L ⊕i−1 f (R )i i−1

fi

F (L ,R ) =k 0 0 (R ,f (R ) ⊕0 1 0 L )0 f1
k
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string can allow the attacker to make inferences about .

In the two-round case:

 where 
 are in some way dependent on .

There are still correlations between the outputs of  on related inputs 
that can be used to distinguish  from a random permutation. In this 
way, even a two round Feistel Network does not uphold Perfect 
Secrecy.

With more than two rounds and certain conditions being satisfied, Feistel 
Networks become indistinguishable from PRPs.

Data Encryption Standard (DES)
The DES block cipher is a 16-round Feistel Network with a block length of 64 

bits and a key length of 56 bits. The same round function  is used in each of 
the 16 rounds. The round function takes a 48-bit sub-key and a 32-input (half 
a block). The key schedule of DES is used to derive a sequence of 48-bit sub-
keys  from the 56-bit master key. 

By the DES definition, each of the sub-keys  is simply a permuted subset of 
48 bits of the master key. 

The DES round function , sometimes called the mangler function, is a 
practical implementation of an SPN with the slight variation that the -boxes 
in this case do not need to be invertible since they are being utilized in the 

greater context of a Feistel Network. Indeed, the entire round function  does 
not need to be invertible. The entirety of this scheme is publicly known, it is 
only the master key that is kept secret.

f1

F (L ,R ) =k 0 0 (f (R ) ⊕1 0 L ,R ⊕0 0 f (f (R ) ⊕2 1 0 L ))0
f ,f1 2 k

Fk
Fk

f̂

k ,…,k1 16

ki

f̂

S

f̂
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-box properties under DES:

Each -box is a 4-to-1 function (4 inputs are mapped to each possible 
output)

Each row in the table contains each of the 16 possible 4-bit strings exactly 
once

Changing one bit of any input to an -box always changes at least two 
bits of the output

This produces the same avalanche effect as described in SPNs.

Attacks on DES can only practically carried out if the number of rounds is 
greatly reduced from 16 to a number ≤ 3. It’s in these cases we can showcase 
the avalanche effect is not complete, allowing us to make inferences about the 
scheme and plaintext we should not be able to. 

Davies-Meyer Construction
The purpose of this construction is to construct a collision-resistant 
compression function from any given block cipher that satisfies strong security 

A graphical representation of the DES mangler.

S

S

S
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properties. 

The Davies-Meyer Construction defines the compression function

 by .

Proving collision resistance based on the assumption that  is a strong PRP 
is not possible as far as we know. If, however, we model  as an ideal cipher, 
such a proof does become possible. In this case, the scheme is collision 
resistant so long as  is sufficiently large.

Hash Functions

Hash Functions Formal Definition
Put simply, hash functions transform arbitrary length inputs ( ) into fixed 
length outputs ( ). Because of the implied utility of hash functions 
though, we expect them to not cause collisions, or at least to do so with a 
vanishing probability. Collisions occur when two distinct inputs  produce 
the same output, meaning .

Collision Resistance:

Formally, we look at keyed hash functions.

. It must be difficult to find a collision for a randomly 
generated key . In the case of hash functions, the key is generally not kept 

h : {0, 1}ℓ h(k,x) =
def

F (x) ⊕k x

A graphical representation of the equation for constructing the compression function.

F

F

ℓ

{0, 1}∗

{0, 1}ℓ(n)

x,x′

H(x) = H(x )′

H (x)  =s H(s,x)
s
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secret, unlike the keyed functions we’ve seen prior. An attacker wishes simply 
to find a collision.

Attacker:

The adversary  is given key  and outputs two messages 

Both hash messages are run through the hash function producing hashes 
in the form 

iff  the attacker  outputs , otherwise outputs .

To insist that a hash function is collision resistant is to show that the probability 
of this attacker outputting  is negligible, or .

Weaker Notions: Strict Collision Resistance is not always necessary.

Second-preimage resistance: A hash function is collision-resistant if it is 
infeasible for any PPT adversary to find a collision in  for two inputs  
where .

Preimage resistance: For an attacker given  where  for a 
uniform , it is infeasible for a PPT adversary to find a value  such that 

 and .

Hash-and-MAC
By applying a hash function  to some message , we can effortlessly 
generate a MAC tag  for the given message. This is secure because the 
attacker  cannot output any new hash values, and  being collision 
resistant ensures the attacker will be unable to find new messages with a 
matching hash. The MAC utilized here is based on CBC-MAC.

 Choose  uniformly from ;  

 Given , for some message , output 

 Given , for some message , and some tag , 
output  iff .

HMAC

s←Gen(1 )n

A s x,x′

{0, 1}ℓ n
′

H (x) =s H (x )s ′ A 1 0

1 P [A = 1] ≤ negl

H x,x′

x = x′

s,y y = H (x)s

x x′

x =′  x y = H (x )s ′

H m

t

A H

Gen :′ k {0, 1}n s←Gen (1 )H
n

Mac :′ k, s m ∈ {0, 1}∗ t←
Mac (H (m))k

s

Vrfy :′ k, s m ∈ {0, 1}∗ t

1 Vrfy (H (m), t) =k
s 1
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In practice, the Hash-and-MAC methodology is rarely used because it requires 
instantiating two cryptographic primitives, the Hash function and a block 
cipher. Utilizing the Merkle-Damgård Transform to hash our arbitrarily sized 
message, we can perform our MAC and Hash in synchrony.

 Choose  uniformly from ;  

 Given , for some message , output 

 Given , for some message , and some tag , 
output  iff 

.

Merkle-Damgård Transform
The purpose of this scheme is to transform fixed length hash functions into 
arbitrary length hash functions.

Let  be a compression function for inputs of length  with 
output length . Fix  and . Construct hash function 

 as follows:

 remains unchanged

 receiving input of key  and string  of length , do:

Gen(1 ) :n k {0, 1}n
′
s←Gen (1 )H

n

Mac :′ k, s m ∈ {0, 1}∗

t =: H ((k ⊕s opad)∣∣H ((k ⊕s ipad)∣∣m))

Vrfy :′ k, s m ∈ {0, 1}∗ t

1

t = H ((k ⊕s opad)∣∣H ((k ⊕s ipad)∣∣m))

(Gen,h) n+ n′ ≥ 2n
n ℓ ≤ n′ IV ∈ {0, 1}n

(Gen,H)

Gen :

H : s x ∈ {0, 1}∗ L < 2ℓ
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1. Append a  to , followed by enough zeros that the length 
of the resulting string is  less than a multiple of . Then 
append , encoded as an -bit string. Parse the resulting 
string as the sequence of -bit blocks .

2. Set .

3. For , compute .

4. Output .

If  is collision-resistant, then so is . Explained simply, we 
are breaking the input up into respective chunks and running each of these 
chunks through the fixed length hash function, using a variation of chained 
CBC-Mode.

Likelihood of Collision
Given a positive integer , say that some  elements  
are chosen uniformly an d independently from a set of size . We can then 
assert that

PKCS #7 Encoding
The purpose of this encoding is to ensure that messages encoded using a block 
cipher encryption scheme are less succeptible to tampering or forgery, boosting 
the integrity and decreasing the malleability of the scheme.

Sender:

1 x

ℓ n′

L ℓ
n′ x , ...,x1 B

z =0 : IV

i = 1, ...,B z =i : h (z ∣∣x )s
i−1 i

zB

(Gen,h) (Gen,H)

N q ≤ 2N y ,…,y1 q

N

≤
4N

q ∗ (q− 1)
1 − e ≤−q(q−1)/2N coll(q,N) ≤

2N
q ∗ (q− 1)
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Assume message is an integral # of bytes

Let  be the block length in bytes of the cipher

Let  be the number of bytes that need to be appended to the message 
to get length as multiple of L

; note 

Append  (encoded in 1 byte),  times

I.e. if 3 bytes of padding are needed, append 

I.e. if 4 bytes of padding are needed, append 

Receiver:

Extract the final number from the the Encoded Data. This number will be 
interpreted as . This is why  must always be , even if our message 
already evenly fits into the block length. The receiver must be able to 
unambiguously read the amount of padding. If it expects to read the padding 
amount and we instead see the unpadded ciphertext, things would go wrong.

Use CBC-Mode decryption to obtain the encoded data

Say the final byte of encoded data has value 

If  or  return ‘error’

If final  bytes  of the encoded data are not all equal to , return ‘error’

Otherwise, strop off final  bytes of the encoded data, and output what 
remains as the message

Padding Oracles
By understanding the definition of PKCS #7 Encoding, we can systematically 
approach the violation of a scheme through what at first appears to be a trivial 
leakage of information. So long as the ‘Padding Oracle’ tells us whether a given 
ciphertext  has proper formatting, we can actually decode the entirety of the 
message. Knowing that neither method we’ve discussed for block ciphers are 
CCA-Secure, this should make sense. In both cases, we can devise a 
methodology for producing predictable changes to the final block of decrypted 
data, thus giving us the opportunity to modify the padding content. By finding the 

L

b > 0

1 ≤ b ≤ L b = 0

b b

0x030303

0x04040404

b b ≥ 1

b

b = 0 b > L

b b

b

c
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number of padding bytes through trial and error, we can then create modifications 
that increase this number, moving on to the previous bit as the bit to modify. 
Through some clever XORing, we can uncover the entirety of the plaintext this 
way.

Formal Assumptions

The Factoring Assumption
Let  be a PPT algorithm that, on input , outputs  where 

 and  are -bit prime numbers. This is allowed to fail with  
probability.

Here we define an experiment in which an attacker  is given an integer  and 
is asked to deduce the prime factorization that produced the number.

1. 

2.  is given  and outputs 

3. The output of the experiment is defined to be , returning 
 otherwise.

Note that if the experiment evaluates to , .

The Factoring Assumption states that for all PPTs  there exists a  such that

RSA Assumption
Given a modulus  and an integer  relatively prime to , we know that 
exponentiation to the th power modulo  is a permutation. Therefore for any 

 we can define  to be the unique element of  that 
yields  when raised to the th power modulo . 

Informally, our task is to compute  for a modulus  of unknown factorization.

GenModulus 1n (N,p, q)
N = pq p, q n negl

A N

Factor (n) :A,GenModulus

(N,p, q) ← GenModulus(1 )n

A N p , q >′ ′ 1

1 ⟺ p ∗′ q =′ N

0

1 {p , q } =′ ′ {p, q}

A negl

Pr[Factor (n) =A,GenModulus 1] ≤ negl(n)

N e > 2 ϕ(N)
e N

y ∈ ZN∗ [y1/e mod N] ZN∗
y e N

x = [y1/e mod N] ⟺ x =e [y mod N]

x N
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Let  be a PPT algorithm that, given input  outputs a modulus  that 
is the product of two -bit primes, as well as two integers  where  
and  and . This is allowed to fail with 

 probability.

Here we define an experiment in which the attacker  is given modulo , 
exponent , and a uniformly chosen , and asked to produce the value  
which, when raised to the th power produces . 

1. 

2. Choose a uniform 

3.  is given  and outputs 

4. The output of the experiment is defined to be , 
returning  otherwise.

The RSA Assumption states that for all PPTs  there exists a  such that

Discrete-Logarithm / Diffie-Hellman Assumptions
Let  denote a generic PPT algorithm for group generation. Given input of size 

,  outputs a description of a cyclic group  as well as its order  where 
 and a generator . Assume that we can perform group operations 

and check if a given bit-string is an element of  in PPT. Despite all cyclic groups 
of the same order being isomorphic (comprised of the same elements), their 
representation will determine the complexity of the operations. 

Here we define an experiment in which the attacker  is given the cyclic group 
, its order , its generator , and a uniformly selected member of . The 
attacker’s goal is to find a value  such that . In other words, to what 
power is the generator  raised such that it produces the uniformly chosen value 

? The value  is guaranteed to exist since all values in  are found by raising  
to some power . 

GenRSA 1n N

n e,d e,d > 1
GCD(e,ϕ(N)) = 1 ed = [1 mod ϕ(N)]

negl

A N

e y ∈ ZN∗ x

e [y mod N]

RSAinv (n) :A,GenRSA

(N, e,d) ← GenRSA(1 )n

y ∈ ZN∗

A (N, e,y) x ∈ Zn∗

1 ⟺ x =e [y mod N]
0

A negl

Pr[RSAinv (n) =A,GenRSA 1] ≤ negl(n)

G

1n G G q

∣∣q∣∣ = n g ∈ G
G

A G
q g h ∈ G

x g =x h

g

h x G g

mod q

DLog (n) :A,G
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1. 

2. Choose a uniform 

3.  is given  and outputs some 

4. The output of the experiment is defined to be , returning  
otherwise. 

The DLog Assumption states that for all PPTs  there exists a  such that

Encryption Schemes

Private-Key Encryption

Formal Definition for Private Key Encryption
A private-key encryption scheme contains three probabilistic functions, 

 such that:

 we assume that this key satisfies .

 where 

 where  or an error, denoted 

We require, simply, that 

If, for some reason, we specify the Message Space ( ) to be 
, we then say that the set of these functions can be referred to as a 

fixed length private key encryption scheme of length .

We also make a few assumptions moving forwards:

 is actually deterministic

Calls to  are probabilistically independent from one another

We assume all encryption schemes are stateless, like the one above, 
unless specified otherwise

One-Time Pad

(G, q, g) ← G(1 )n

h ∈ G
A (G, q, g,h) x ∈ Zq

1 ⟺ g =x h 0

A negl

Pr[DLog (n) =A,G 1] ≤ negl(n)

Gen,  Enc,& Dec

k ←Gen(1 )n ∣k∣ ≥ n

c← Enc (m)k m ∈ {0, 1}∗

m←Dec (c)k m ∈ {0, 1}∗ ⊥

m = Dec (Enc (m))k k

M m ∈
{0, 1}ℓ(n)

ℓ(n)

Dec

Enc
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Only to be used with a given key one time, the One-Time Pad specifies a 
means to achieve perfect secrecy in communication at the cost of the 
requirement that . 

Let 

: choose a uniform key 

Public-Key Encryption

Plain Rivest-Shamir-Adleman (RSA) Scheme
Before fortifying it, we first consider an insecure “plain” RSA encryption 
scheme.

Here, we define  as it is referenced in the RSA Assumption.

1. 

2. 

3. Choose some  such that 

4. Compute 

5. Return 

Now, with  in hand, we define the public key encryption scheme as 
follows:

 on input  run .  is the public 
key.  is the private key.

 on input a public key  and a message , 
compute the ciphertext .

 on input a private key  and a ciphertext , 
compute the message .

∣k∣ = ∣m∣

M = {0, 1}n

Gen k ∈ {0, 1}n

Enc (m) =k k ⊕m

Dec (c) =k k ⊕ c

GenRSA

GenRSA :

(N,p, q) ← GenModulus(1 )n

ϕ(n):= (p − 1) ∗ (q− 1)

e > 1 GCD(e,ϕ(N)) = 1

d := [e−1 mod ϕ(N)]

(N, e,d)

GenRSA

Gen : 1n (N, e,d) ← GenRSA(1 )n ⟨N, e⟩
⟨N,d⟩

Enc : pk = ⟨N, e⟩ m ∈ ZN∗
c := [me mod N]

Dec : sk = ⟨N,d⟩ c ∈ ZN∗
m := [cd mod N]
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If the message is not chosen uniformly from , we risk exposing information 
about the message. Moreover, this algorithm is deterministic and so by 
definition cannot be CPA-Secure. 

Diffie-Hellman key-exchange protocol
The Diffie-Hellman key-exchange protocol is radical in that it allows for the 
exchange of secret keys over an insecure channel, such as the public internet.

We assume we are given , a PPT algorithm that when given input  outputs 
a description of a cyclic group , its order  (where ), and a 
generator . 

The protocol is defined formally as follows:

1. Alice performs 

2. Alice chooses a uniform  and computes .

3. Alice sends  to Bob.

4. Receiving , Bob chooses a uniform  and computes 
. Bob sends  to Alice and outputs the key .

5. Alice receives  and outputs the key .

We can see the protocol is correct and that both parties arrive at the same 
value via the following relation:

ZN∗

G 1n

G q ∣∣q∣∣ = n

g ∈ G

(G, q, g) ← G(1 )n

x ∈ Zq h :=A gx

(G, q, g,h )A

(G, q, g,h )A y ∈ Zq
h :=B gy hB k :=B hA

y

hB k :=A hB
x

k =B h =A
y (g ) =x y gxy

k =A h =B
x (g ) =y x gxy
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Attacking the protocol:

Here, we define an experiment in which keys are exchanged. An attacker  is 
given a either a uniformly chosen bit-string of length , or the real key  that 
was generated during execution. If the attacker is unable to distinguish the two 
with better than random probability, the scheme is secure.

1. Both parties holding  execute the protocol . This produces a transcript 
 containing all messages sent by both parties as well as a key  

output by each of the parties

2. A uniform bit  is chosen. If , set , otherwise 

choose a uniform . 

3.  is given  and  and outputs a bit .

A graphical representation of the formalized protocol

A

n k

KE (n) :A,Π
eav

1n Π
trans k

b ∈ {0, 1} b = 0 :=k̂ k

∈k̂ {0, 1}n

A trans k̂ b′
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4.  The output of the experiment is defined to be , returning  
otherwise. 

The exchange protocol is considered secure in the presence of an 
eavesdropper if for all PPTs  there exists a  such that

El Gamal Encryption
Taher El Gamal realized that the Diffie-Hellman key-exchange protocol could 
be repurposed as a full public key encryption scheme, rather than for simply 
choosing a key . To do this, we perform our operations as before. Once a key 

 is agreed upon, Bob is able to encrypt a message  simply by 
sending  to Alice, who can easily recover  using her knowledge of . 
By extension, we argue that the eavesdropper learned nothing about .

This scheme is used in a symmetric key exchange. 

 On input  run  to obtain . Then choose a uniform 
 and compute . The public key is  and the 

private key is . The message space is .

 Given a public key  and a message , 
choose a uniform  and output the ciphertext .

 Given a private key  and a ciphertext , 
output .

To showcase that this is a successful scheme, let  
where . Then consider the equivalence

1 ⟺ b =′ b 0

A negl

Pr[KE (n) :=A,Π
eav 1] ≤ +

2
1

negl(n)

k

k m ∈ G
k ∗m m k

m

Gen : 1n G(1 )n (G, q, g)
x ∈ Zq h := gx ⟨G, q, g,h⟩

⟨G, q, g,x⟩ G

Enc : pk = ⟨G, q, g,h⟩ m ∈ G
y ∈ Zq ⟨g ,h ∗y y m⟩

Dec : sk = ⟨G, q, g,x⟩ ⟨c , c ⟩1 2

:=m̂ c /c2 1
x

⟨c , c ⟩ =1 2 ⟨g ,h ∗y y m⟩
h = gx

=m̂ =
c1
x

c2 =
(g )y x

h ∗my

=
gxy

(g ) ∗mx y

=
gxy

g ∗mxy

m


