
CMSC456 Course Material 1

🗝
CMSC456 Course Material
Published with the permission of Professor Jonathan Katz

Randomness

Pseudorandom Functions (PRFs)
 all functions that map from to

How large is this set of functions? For any bit in the input string, we can apply an
Identity function, a NOT function (), a ONE function (), or a ZERO function ().
Therefore a function in this space is just a sequence of these smaller function
components such that we accumulate of them, one for each bit. This unique
ordering and arrangement of the sub functions is what comprises the function
table.

Input Output

 possibilities

 possibilities

 possibilities

 possibilities

Func =n {0, 1}n {0, 1}n

¬ 1 0

n

0...000 2n

0...001 2n

0...010 2n

0...100 2n

... ...

CMSC456 Course Material 2

Input Output

 possibilities

Because there are ways to configure an bit string, and each of these can be
transformed into any other bit string, the size of the function space is as follows:

 is a pseudorandom function if for uniform key is
indistinguishable from a uniform function .

In this mode of thinking, an attacker can probe however much they like, but they
should not be able to distinguish whether they are given a box with a uniformly
chosen key or an actual function ; both of which are chosen uniformly and at
random.

Pseudorandom Permutations (PRPs)
Let . is a PRP if it is a bijection, meaning that the inverse ()
exists.

Let be the set of permutations. What is ?

For something to be a ‘permutation’, we disallow duplicate values in out output
function. Therefore the number of possibilities for each entry in the list of all
possible bit strings actually dwindles over time, leading to possibilities rather
than the much larger set of possibilities in the set of all functions.

Pseudorandom Generators (PRGs)
Access to a PRF immediately implies the access to a PRG , simply because
the only requirement for a PRG is that it is indistinguishable from a PRF. In
practice though, we don’t have usually use PRFs, only PRGs that are
indistinguishable from them. The ontology of true PRGs is still a contested topic. If
PRGs do actually exist, this would imply that . In practice we either
simply assume that PRGs exist, or construct valid PRGs on the backs of weaker
assumptions.

Probabilities

Events

1...111 2n

2n n

n

∣Func ∣ =n (2) =n 2n 2n2
n

F Fk k ∈ {0, 1}n

f ∈ Funcn

f

f ∈ Funcn f f−1

Perm ⊂n Funcn ∣Perm ∣n

2 !n

F G

P = NP

CMSC456 Course Material 3

An Event is a particular occurrence in some experiment. e.g., the event that
random variable X takes values x.

: probability of event E

Conditional Probability
Probability that one event occurs, given that some other event occurred.

Bayes Theorem
Relatedly, Bayes Theorem shows us how to rearrange such probabilities:

Independence
Two random variables are independent iff

for all

In other words, the probability of having value is the same, regardless of
’s value

Law of Total Probability
Say that are a partition of all possibilities. Then for any :

Negligible Probabilities (s)
 is negligible for every polynomial there is an

such that for all it holds that . Typically, we denote arbitrary

negligible functions as ‘ ’s.

Let and be negligible functions. It follows that

Defining implies a third negligible function.

Similarly, also implies a negligible function for any
Polynomial

Pr[E]

A B

Pr[A∣B] =
Pr[B]

Pr[A∧B]

Pr[A∣B] = Pr[B∣A] ∗
Pr[B]
Pr[A]

X,Y

x,y : Pr[X = x∣Y = y] = Pr[X = x]

X x

Y

E , ...E1 n A

Pr[A] = Pr[A∧∑i E] =i Pr[A∣E] ∗∑i i Pr[E]i

negl
function f : N→ R ⟺ p N

n < N f(n) <
p(n)
1

negl

negl1 negl2

negl ←3 negl +1 negl2
negl ←4 p(n) ∗ negl1
p(n)

CMSC456 Course Material 4

Group Theory and Related Math

Abelian Groups
An Abelian Group is a set and a binary operation defined on such that the
following properties hold.

Closure: Given a pair of elements ; is also in

Identity: There is an element such that for all other ,
.

Inverse: Every element has an inverse such that
, meaning they produce the Identity.

Associativity for all ;

Communativity for all ;

Cyclic Groups
Let be a finite group of order and let be some element of . We can now
define a cyclic group by using as a “generator” and checking if it is able to
populate .

We write the generated group as . We expect
that will simply produce since we are generating . Values may
begin to loop before each power is represented. It’s only when each power
produces a distinct value that produces a set of the expected order, which
then tells us that is a generator and produces a cyclic group. Cyclic groups can
have more than one group.

This operation can be performed both in groups under addition modulo and
groups under multiplication modulo .

When an expression regarding a given group is written , we define as
the generator and as the index within the group.

Example 1: Given , find :

Example: Given , find :

G ∘ G

g,h ∈ G g ∘ h G

e ∈ G g ∈ G e ∘ g = g

g ∈ G h ∈ G h ∘ g = g ∘
h = e

f, g,h ∈ G f ∘ (g ∘ h) = (f ∘ g) ∘ h

g,h, ∈ G g ∘ h = h ∘ g

G m g G

g

G

< g >= {g , g , g ,…, g }0 1 2 m−1

gm g0 mod m

< g >
g

N

N

G log ig g

i

Z12 log 55

< 5 >= {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} ∴ log 5 =5 1

Z11∗ log 98

< 8 >= {1, 8, 9, 6, 4, 10, 3, 2, 5, 7} ∴ log 9 =8 2

CMSC456 Course Material 5

Relevant Theorems:

Any group of prime order is cyclic, and every non-identity element is a
generator

If is prime, then is cyclic, noting that the order of said group is

Diffie-Hellman Problems
Based on our understanding of cyclic groups and associated notation, we
describe two interesting problems. It can be demonstrated that a proof of one
version’s ease or difficulty extends to the other’s.

Given a cyclic group and a generator , define:

Computational Diffie-Hellman Problem (CDH):

Given , find the result

Decisional Diffie-Hellman Problem (DDH):

Given the result , find originating values

When selecting a group to compute on, we generally search for groups that are
hard to solve for in cryptographic contexts. For example, is easy for any
and any selected generator . Therefore for our purposes we select prime-order
groups. These have the added benefit that every element except for the identity is
a generator!

Example:

Select a prime-order subgroup of where is prime

E.g. let for prime

So has order

Take the subgroup of powers ie

 is a group

p Zp∗ p − 1

G g

DH (h ,h) =g 1 2 DH (g , g) =g
x y g =xy h =1

y
h2
x

DH (h ,h)g 1 2

DH (g , g)g
x y

G

ZN N

g

Zp∗ p

p = kq+ 1 p, q

Zp∗ p − 1 = kq

kth

G = {[xk mod p]∣x ∈ Z } ⊂p
∗ Zp∗

G

CMSC456 Course Material 6

Can show that it has order

Since is prime, must be cyclic

Group Order
The order of an Abelian Group is the number of elements contained within it. Note
that this means each element tallied must conform to the properties of Abelian
Groups.

For groups where , their order is simply .

For groups where , it is less clear. For these, we denote their
order as .

If is prime, then we know all elements of are Invertible ,
therefore .

If for distinct primes, then the invertible elements are the
integers from to that are not multiples of or . Therefore

.

Note that assuming we have an efficient algorithm for Invertibility and
access to all potential members of the group, we can simply traverse
each element in the generated group and ask if it is Invertible, which is a
required property of a true Abelian Group. Tallying the invertible
elements reveals the true Order.

Group Isomorphisms
Let be groups with respect to the operations respectively. A
function is an isomorphism from to if:

 is a bijection / permutation and

For all we have

If there exists an isomorphism that satisfies these conditions we state that the two
groups are isomorphic and write .

In essence, all we are doing is renaming elements.

Chinese Remainder Theorem

(p − 1)/k = q

q G

∘ = + mod N ∣Z ∣ =N N

∘ = ∗ mod N
∣Z ∣ =N
∗ ϕ(N)

N ZN∗ mod N
ϕ(N) = N − 1

N = pq p, q
1 N − 1 p q

ϕ(N) = (p − 1)(q− 1)

G,H ∘ , ∘ ,G H
f : G→ H G H

f

g , g ∈1 2 G f(g ∘1 G g) =2 f(g) ∘1 H f(g)2

G ≃ H

CMSC456 Course Material 7

The Chinese Remainder Theorem states that for some where
are relatively prime, we can conclude that

Moreover, let be the function that maps elements to
pairs where and defined
by

By this definition, serves as an isomorphism in both the cases of and .

Greatest Common Divisor (GCD)
Given two numbers where , we determine the largest value that
evenly divides both and and denote it . In the process of solving for , we
can also find the factors of and that produce such that .
These values will always exist.

Euclidean Algorithm:

If is , we know that we are done. Otherwise, we recurse, using in
place of and in place of . When reaches , will by definition be the GCD.

let EuclideanGCD (a: int) (b: int) =
 (* This is the base case *)
 if a == 0 then
 (b, 0, 1)
 (* Otherwise *)
 else
 (* Use the remainder to compute recursively *)
 let (d, X, Y) = EuclideanGCD (b % a) a in
 (* Rewrite X and Y *)
 (d, Y - floor(b / a) * X, X)

Modular Invertibility

N = pq p, q > 1

Z ≃N Z ×p Zq
and

Z ≃N
∗ Z ×p

∗ Zq∗

f x ∈ {0,…,N − 1}
(x ,x)p q x ∈p {0,…,p − 1} x ∈q {0,…, q− 1}

f(x) =
def
([x mod p], [x mod q])

f ZN∗ ZN

a, b ∈ Z a ≥ b

a b d d

a b d d = Xa+ Yb

a 0 b mod a
a a b a 0 b

CMSC456 Course Material 8

An integer is Invertible modulo if there exists an integer such that
. Therefore to determine if integer is Invertible, we simply need to

find a value which satisfies this condition. The resulting value is written
.

We can test for Invertibility succinctly by asserting that is valid
 , meaning that and share no common factors.

Division Mod N
If an expression is written , it is only valid so long as we know is
Invertible . To evaluate, first solve then plug into

.

Modular Exponentiation
If an expression is written for some base and an integer
exponent , we must solve it in a clever way, as we expect to be a large
value. By solving it recursively and applying a modulo at each step of the
function, we can keep the values we are working with comparatively small.

By Hand Algorithm:

Note that if we can solve for the modulo , the exponent can be
rewritten as , meaning we can rewrite our full expression as

. If this produces an exponent that is easier to work with
it can make the process way easier!

Naïve Algorithm:

let rec modExp_naive (a: int) (b: int) (n: int) =
 (* This is the base case *)
 if b == 0 then
 (* a^0 = 1 in all cases *)
 1
 else
 (* a * [a^(b-1) mod N] mod N *)
 (a * (modExp_naive a (b-1) n)) mod n

b N a ab

mod N = 1 b

a a a =
[b−1 mod N]

[b−1 mod N]
⟺ GCD(b,N) = 1 b N

[c/b mod N] b

mod N x = [b−1 mod N]
[cx mod N]

[c/b mod N]{
[c ∗ [b mod N] mod N]−1

Error
GCD(b,N) = 1
GCD(b,N) = 1

[ab mod N] a ∈ ZN
b > 0 b

N

ϕ(N) N b

[b mod ϕ(N)]
[a[b mod ϕ(N)] mod N]

CMSC456 Course Material 9

This code is based on the following recurrence:

Intelligent Algorithm:

let rec modExp_smart (a: int) (b: int) (n: int) =
 (* This is the base case *)
 if b == 0 then
 (* a^0 = 1 in all cases *)
 1
 else
 (* If b is even *)
 if b mod 2 == 0 then
 (* (a^{b/2})^2 mod N *)
 let sub = modExp_smart a (b / 2) n in
 (sub * sub) mod n
 else
 (* a * (a^{(b-1)/2})^2 mod N *)
 let sub = modExp_smart a ((b - 1) / 2) n in
 (a * sub * sub) mod n

This code is based on the following recurrence:

Security Metrics

A Note on Evaluating Attackers
When running an attacker, the exact output for a given set of messages is not
entirely relevant. Instead, we care about the probability that running the attacker

 produces a (successful attack) rather than a (failed attack). For an attacker
to be viable, we must showcase that this probability is greater than
(random) for selecting the bit of the encoded message , plus a negl.
Formally, an attacker is successful iff .

Perfect Secrecy

[ab mod N] = a ∗ ab−1 mod N

[ab mod N] = {
(a) mod N2

b 2

a ∗ (a) mod N2
b−1 2

b mod 2 = 0
b mod 2 = 1

A 1 0
Pr[]2

1

b mb

Pr[A = 1] > Pr[+ 2
1 negl]

CMSC456 Course Material 10

For an encryption scheme to be ‘perfectly secret’, observing a given ciphertext
should reveal no information at all about the plaintext. Formally, this means that
the likelihood of guessing the correct plaintext is unchanged by observing the
ciphertext.

One major limitation of this definition is that it requires the key for any given
scheme attempting perfect secrecy to contain the same quantity of information as
the message , that is, to have the same length. . To showcase that a
scheme does not comply with perfect security, one simply needs to showcase that
observing the ciphertext changes the likelihood with which you are able to guess
the plaintext.

Malleability
Malleability refers to a scheme’s ability to be resistant to ciphertext modifications
and the ability of adversaries to produce expected results in a decrypted plaintext.
An example of this is the One-Time Pad, which is extremely malleable, allowing
for attackers to make deterministic alterations to what will eventually become the
plaintext, even if perfect secrecy is maintained.

Integrity
Integrity refers to a scheme’s ability to verify that a given ciphertext was actually
sent by who we believe it was. Violating this principle only requires that an
adversary gets a recipient to accept a message that was never actually sent by
an honest party.

EAV-Security
Highly related to Perfect Secrecy, EAV-Security specifies a standard of security
for protecting against Eavesdroppers who are able to listen in on the
communication channel and observe transmitted ciphertexts. To showcase that a
scheme is not EAV-Secure, one needs only demonstrate that it is not perfectly
secret across an arbitrary quantity of messages. For example, a single use One-
Time Pad is perfectly EAV-Secure, but this security is broken if the key is ever
reused.

CPA-Security

P [M = m ∣ C = c] = P [M = m]

k

m ∣k∣ = ∣m∣

CMSC456 Course Material 11

By definition stronger in definition than EAV-Security, CPA-Security allows for the
attacker to choose their own plaintexts, sending these plaintexts through the
encryption algorithm and witnessing the ciphertexts they produce. We evaluate
the security of the scheme by asking if this extra information gives the attacker an
upper hand in decrypting the messages.

Attacker:

1.

2. interacts with an encryption oracle , outputting where
.

3. . give to

4. can continue to interact with

5. outputs ; succeeds if and experiment evaluates to in this
case

CCA-Security
By definition stronger in definition than both EAV-Security and CPA-Security,
CCA-Security allows the attack to choose their own plaintexts, witness the
resulting ciphertexts, and decrypt ciphertexts of their chosing, witnessing the
resulting decodings. The one exception occurs with the challenge ciphertext being
presented to the attacker , as being allowed to decrypt it outright would defeat
the point of the exercise.

Attacker:

1.

2. interacts with an encryption oracle and decryption oracle
, outputting where .

3. . give to .

4. can continue to interact with and

PrivK (n) :A,Π
CPA

k ←Gen(1)n

A(1)n Enc ()k m ,m0 1

∣m ∣ =0 ∣m ∣1

b← {0, 1}, c← Enc (m)k b c A

A Enc ()k

A b’ A b = b’ 1

A

PrivK (n) :A,Π
CCA

k ←Gen(1)n

A(1)n Enc ()k

Dec ()k m ,m0 1 ∣m ∣ =0 ∣m ∣1

b← {0, 1}, c← Enc (m)k b c A

A Enc ()k Dec ()k

CMSC456 Course Material 12

5. outputs ; succeeds if and experiment evaluates to in this
case

Unforgeability
We define unforgeability only in a formal context, one that is decided by the
evaluation of this experiment. Essentially, we are checking if the attacker is
able to, given access to the encryption oracle , create a new ciphertext that
is successfully decrypted without error and that we never fed the encryption
oracle.

1.

2. interacts with an encryption oracle , eventually outputting
ciphertext .

3. and let denote the set of all queries that submitted to the
encryption oracle.

4. iff and output , otherwise output .

A private-key encryption scheme is unforgeable if for all PPT adversaries ,
there is a negligible function negl such that:

.

Authenticated Encryption
A scheme is said to possess Authenticated Encryption (AE) if it posessses both
CCA-Security and Unforgeability.

Probabilistic Polynomial Time (PPT)
A scheme is secure in the context of PPT if an attacker succeeds in breaking the
scheme with at most negligible probability. By manipulating the security
parameter , the scheme designer can alter the probability of breaking the
scheme and the duration of computation required to achieve that probability.
Because increasing increases the compute time for encryption and decryption,
the value is to be minimized while still protecting against potential threats.
Approximately, we are looking for probabilities of () for cracking the scheme
within years ().

A b’ A b = b’ 1

A

Enck

Enc_Forge (n) :
A,Π

k ←Gen(1)n

A(1)n Enc ()k

c

m =: Dec(c) Q A

m = ⊥ m ∈/ Q 1 0

Π A

Pr[Enc_Forge (n) =
A,Π 1] ≤

negl(n)

n

n

2−60 ε
200 t

CMSC456 Course Material 13

 Runs in polynomial time there exists a polynomial
such that for all input the computation of terminates within
at most steps.

Cryptographic Utilities

Stream Ciphers

Linear Feedback Shift Registers (LFSRs)
Historically used for random number generation, LFSRs are comprised of an
array of single-bit registers , along with a set of boolean
feedback coefficients . The size of the array is referred to as the
degree of the LFSR. This specification makes LFSRs extremely hardware
efficient. After each ‘clock tick’, the value of is output as for the th clock
tick and the states of each register are updated, register passing its value
on to register . The initial register is overwritten using the feedback
coefficients.

Note that the superscript in represents the clock tick. To describe the way
each register updates on each clock tick, we write

To denote the outputs of an LFSR as where , we write

One way to conceptualize this is to realize the first output bits are the initial
state of the registers .

function f : N→ R ⟺ ∃c where f(n) < n for all nc

algorithm A : ⟺ p

x ∈ {0, 1}∗ A(x)
p(∣x∣)

n s , ..., sn−1 0 n

c , ..., cn−1 0 n

s0 yi i

si+1
si sn−1

t si
t

{
s = si

(t+1)
i

(t)

s = c sn−1
(t+1) ⨁i=0

n−1
i i
(t)

i = 0,…,n− 2

y ,y ,…,0 1 y =i s0
(i)

{
y = si i

(0)

y = c yi ⨁j=0
n−1

j i−n+j

i = 0,…,n− 1
i > n− 1

n

s …s0 n−1

CMSC456 Course Material 14

LFSRs can be used to construct stream ciphers of the form in an
organic way- give them an initial state and produce a new value by executing
a single clock tick.

Note that a degree- LFSR has at most possible states that correspond to
the possible values of each register. A degree- LFSR will eventually repeat a
previous state. Once it does, it will then repeatedly cycle through this same set
of states and their corresponding outputs.

An LFSR is said to have maximum length if it cycles through all nonzero
states before repeating. Note that this is the ideal case.

Key-recovery attacks:

The output of a maximum-length LFSR has good properties, and typically far
too many possible states to traverse. Despite this, LFSRs are not secure
stream ciphers. If we assume the feedback coefficients are known to the
attacker, then the first bits of output from a degree- LFSR will reveal the
initial state of the LFSR, which functions as the key. Once known, all future
output can be predicted. See formal definition above if confused.

Even if the feedback coefficients are hidden to an attacker, the initial state can
still be deduced in only output bits. As before, the first output bits reveal
the initial state. Given the next output bits, we can construct a system of
equations for which there is only one solution, revealing each feedback
coefficient.

An example of a simple LFSR

(Init,Next)

n 2n

n

2n−1

n n

2n n

n

CMSC456 Course Material 15

Feedback Shift Registers (FSRs)
FSRs are the product of introducing Nonlinearity to LFSRs. This makes the
systems less predictable, and more secure. There are multiple approaches for
introducing this nonlinearity:

Nonlinear feedback: The most apparent way to implement nonlinearity is
to make the feedback loop nonlinear. Everything is identical to an LFSR,
except that the new value of the leftmost register is now determined
nonlinearly.

Given some arbitrary nonlinear function that operates on the collection
of registers, the FSR is able to generate a new state for . For
security, we posit that for to be “balanced”,

 where the probability is computed over uniformly selected
states. In practice, we often see the use of ANDs and ORs.

Formally:

Nonlinear output: Rather than updating our new state nonlinearly, we can
simply determine our output nonlinearly. Here, we denote the function that
computes the output bit to be and refer to it as the filter. As before, we
expect it to be balanced to avoid obvious bias.

Combination generators: By using more than one LFSR, we can
generate the final output stream by combining the outputs of the individual
LFSRs in some nonlinear way. The individual LFSRs do not have to be of
the same degree, and their having this property is actually advantageous
in achieving maximization. Care must be taken to ensure the combined
output is balanced, as before.

y =n c y ⊕n−1 n−1 ⋯⊕ c y0 0

⋮
y =2n−1 c y ⊕n−1 2n−2 ⋯⊕ c y0 n−1

sn−1

g

sn−1
g Pr[g(s ,…, s) =n−1 0

1] ≈ 1/2

{
s := si

(t+1)
i+1
(t)

s := g(s ,…, s)n−1
(t+1)

n−1
(t)

0
(t)

i = 0,…,n− 2

g

CMSC456 Course Material 16

Trivium is the best example of an FSR used in practice as a stream cipher,
and is an implementation of a combination generator. Within, we can see
three couples, nonlinear FSRs that have decrees 93, 84, and 111 respectively.
The state is the concatenation of the states of these sub-FSRs. In the
function, Trivium is run for 4 * 288 clock ticks with discarded output to ensure
its initial state cannot be deduced.

Block Ciphers

Block Ciphers Formal Definition
When a block scheme is in CTR Mode (Counter), XORing takes place after
encryption via the PRF. The outputs of each block are independent from one
another. Thus, modifiying the block of a message will not modify any
blocks of the ciphertext seldom .

Init

mn m

cn

CMSC456 Course Material 17

By contrast when in CBC Mode(Cipher Block Chaining), XORing takes place
prior to encryption via the PRF. The outputs of each block are XORed with the
input of the subsequent block, meaning that modification to will modify all
subsequent blocks where .

Both of these are CPA-Secure.

Neither of these are CCA-Secure because they are malleable. By changing
bits in the ciphertext, certain blocks of the decrypted message will become
random through the inverse function , but others will become predictably
modified because they are also being ’d with information outside of the
inverse function.

mn

mx x > n

Fk
−1

⊕

CMSC456 Course Material 18

Cipher Block Chaining Message Authentication Code (CBC-
MAC)

A message, is input into a function , its ouput is ’d with before
 is run through . Once all messages have been run through , its final

output is , which should prove integrity.

This methodology does not require an IV, unlike CBC-Mode encryption. It is
deterministic for this reason. CBC-MACs do not need to be probabilistic to be
secure! Verification can simply be done by re-computing the result.

Note that we explicitly avoid using an because its use reveals too much
information to adversaries.

The methodology of is simply to compare the output of this
scheme with . As long as remains secret this is valid.

To ensure the utility of CBC-MAC for arbitrary length messages, we must also
encode the length of the message (in blocks) as the first block of our CBC.
This is done at the start of the blocks rather than at the end to ensure
unforgeability.

m1 Fk ⊕ m2

m2 Fk Fk
t

IV

Vrfy (m, t)k

t k

CMSC456 Course Material 19

Confusion-Diffusion Paradigm
The CDP is, simply, a paradigm for constructing concise and random-looking
permutations. The goal is to construct a PRP with a large block length from
many smaller PRPs with a smaller block length.

Through the use of numerous PRPs , the scheme is said to introduce
confusion into .

On its own, this definition is not enough. Assuming the input on is split
into the components that will be fed to sub functions, changes to a single
component in will produce predictable changes in .

Therefore we require an additional step to perform diffusion. In this diffusion
step, the bits of the output are permuted using a mixing permutation. This
spreads local change (e.g. change in a single byte) throughout the entirety of
the output.

In practice, it is the application of the confusion and diffusion steps in
sequence that is referred to as a ‘round’. As the rounds are applied, the output
of one becomes the input to the next. Through the application of sufficient
rounds, becomes indistinguishable from a PRP.

Substitution-Permutation Networks (SPNs)
SPNs are used to directly implement the Confusion-Diffusion Paradigm.

F

{f }i

{f }i
F

F (x)k

n n

x F (x)k

F

CMSC456 Course Material 20

For each round:

Key mixing (Confusion): Set , where is the current round’s
sub-key.

Substitution (/ -box): Set where is the
th byte of .

Permutation (Diffusion): Permute the bits of to obtain the output of the
round.

Finally, perform another Key mixing step such that the final Substitution and
Permutation processes are not wasted.

There are certain requirements placed on the SPN that are required to
achieve the desired effect:

1. Changing a single input bit for any given -box changes at least two of
the resulting output bits.

2. Mixing permutations are designed such that the bits output by any given
-box affect the input of multiple -boxes in the next round.

The presence of these requirements causes an Avalanche Effect: a single
permuted bit in the input can be expected to alter half of the output bits.

An example of a properly constructed 3-round SPN.

x := x⊕ k k

fi S x := S (x)∣∣...∣∣S (x)1 1 n n xi i

x

x

S

S

S

CMSC456 Course Material 21

Feistel Networks
Unlike the S-Boxes used in SPNs, the sub-functions of Feistel Networks do
not need to be invertible. By consequence, even Hash functions can be used
in each of the blocks. The goal here, then, is to compose an invertible function
from non-invertible components.

For a balanced Feistel Network with -bit block length, the th round function

 takes as input a sub-key and an -bit string and generates an -bit
output. A single master key can be used to derive each sub-key.

 via

ℓ i

fî ki ℓ/2 ℓ/2
k

f :i {0, 1} →ℓ/2 {0, 1}ℓ/2 f (R)i =def (k ,R)fî i

CMSC456 Course Material 22

Note that the functions are public and known- it is only the keys
used for them that are kept a secret.

At each stage of the network, we solve each half of the network and
.

To invert / decrypt, we simply run the output of the network back through-
but reverse the order of each sub-function .

This is an example of a 3-round Feistel Network

Attacking Feistel Networks:

In the one round case:

 where is in some way
dependent on .

The left half of the output is always the right half of the input, and is
being XORed with the left half of the input. Simply using the all zero

fî

Li
Ri

L :=i Ri−1

R :=i L ⊕i−1 f (R)i i−1

fi

F (L ,R) =k 0 0 (R ,f (R) ⊕0 1 0 L)0 f1
k

CMSC456 Course Material 23

string can allow the attacker to make inferences about .

In the two-round case:

 where
 are in some way dependent on .

There are still correlations between the outputs of on related inputs
that can be used to distinguish from a random permutation. In this
way, even a two round Feistel Network does not uphold Perfect
Secrecy.

With more than two rounds and certain conditions being satisfied, Feistel
Networks become indistinguishable from PRPs.

Data Encryption Standard (DES)
The DES block cipher is a 16-round Feistel Network with a block length of 64

bits and a key length of 56 bits. The same round function is used in each of
the 16 rounds. The round function takes a 48-bit sub-key and a 32-input (half
a block). The key schedule of DES is used to derive a sequence of 48-bit sub-
keys from the 56-bit master key.

By the DES definition, each of the sub-keys is simply a permuted subset of
48 bits of the master key.

The DES round function , sometimes called the mangler function, is a
practical implementation of an SPN with the slight variation that the -boxes
in this case do not need to be invertible since they are being utilized in the

greater context of a Feistel Network. Indeed, the entire round function does
not need to be invertible. The entirety of this scheme is publicly known, it is
only the master key that is kept secret.

f1

F (L ,R) =k 0 0 (f (R) ⊕1 0 L ,R ⊕0 0 f (f (R) ⊕2 1 0 L))0
f ,f1 2 k

Fk
Fk

f̂

k ,…,k1 16

ki

f̂

S

f̂

CMSC456 Course Material 24

-box properties under DES:

Each -box is a 4-to-1 function (4 inputs are mapped to each possible
output)

Each row in the table contains each of the 16 possible 4-bit strings exactly
once

Changing one bit of any input to an -box always changes at least two
bits of the output

This produces the same avalanche effect as described in SPNs.

Attacks on DES can only practically carried out if the number of rounds is
greatly reduced from 16 to a number ≤ 3. It’s in these cases we can showcase
the avalanche effect is not complete, allowing us to make inferences about the
scheme and plaintext we should not be able to.

Davies-Meyer Construction
The purpose of this construction is to construct a collision-resistant
compression function from any given block cipher that satisfies strong security

A graphical representation of the DES mangler.

S

S

S

CMSC456 Course Material 25

properties.

The Davies-Meyer Construction defines the compression function

 by .

Proving collision resistance based on the assumption that is a strong PRP
is not possible as far as we know. If, however, we model as an ideal cipher,
such a proof does become possible. In this case, the scheme is collision
resistant so long as is sufficiently large.

Hash Functions

Hash Functions Formal Definition
Put simply, hash functions transform arbitrary length inputs () into fixed
length outputs (). Because of the implied utility of hash functions
though, we expect them to not cause collisions, or at least to do so with a
vanishing probability. Collisions occur when two distinct inputs produce
the same output, meaning .

Collision Resistance:

Formally, we look at keyed hash functions.

. It must be difficult to find a collision for a randomly
generated key . In the case of hash functions, the key is generally not kept

h : {0, 1}ℓ h(k,x) =
def

F (x) ⊕k x

A graphical representation of the equation for constructing the compression function.

F

F

ℓ

{0, 1}∗

{0, 1}ℓ(n)

x,x′

H(x) = H(x)′

H (x) =s H(s,x)
s

CMSC456 Course Material 26

secret, unlike the keyed functions we’ve seen prior. An attacker wishes simply
to find a collision.

Attacker:

The adversary is given key and outputs two messages

Both hash messages are run through the hash function producing hashes
in the form

iff the attacker outputs , otherwise outputs .

To insist that a hash function is collision resistant is to show that the probability
of this attacker outputting is negligible, or .

Weaker Notions: Strict Collision Resistance is not always necessary.

Second-preimage resistance: A hash function is collision-resistant if it is
infeasible for any PPT adversary to find a collision in for two inputs
where .

Preimage resistance: For an attacker given where for a
uniform , it is infeasible for a PPT adversary to find a value such that

 and .

Hash-and-MAC
By applying a hash function to some message , we can effortlessly
generate a MAC tag for the given message. This is secure because the
attacker cannot output any new hash values, and being collision
resistant ensures the attacker will be unable to find new messages with a
matching hash. The MAC utilized here is based on CBC-MAC.

 Choose uniformly from ;

 Given , for some message , output

 Given , for some message , and some tag ,
output iff .

HMAC

s←Gen(1)n

A s x,x′

{0, 1}ℓ n
′

H (x) =s H (x)s ′ A 1 0

1 P [A = 1] ≤ negl

H x,x′

x = x′

s,y y = H (x)s

x x′

x =′  x y = H (x)s ′

H m

t

A H

Gen :′ k {0, 1}n s←Gen (1)H
n

Mac :′ k, s m ∈ {0, 1}∗ t←
Mac (H (m))k

s

Vrfy :′ k, s m ∈ {0, 1}∗ t

1 Vrfy (H (m), t) =k
s 1

CMSC456 Course Material 27

In practice, the Hash-and-MAC methodology is rarely used because it requires
instantiating two cryptographic primitives, the Hash function and a block
cipher. Utilizing the Merkle-Damgård Transform to hash our arbitrarily sized
message, we can perform our MAC and Hash in synchrony.

 Choose uniformly from ;

 Given , for some message , output

 Given , for some message , and some tag ,
output iff

.

Merkle-Damgård Transform
The purpose of this scheme is to transform fixed length hash functions into
arbitrary length hash functions.

Let be a compression function for inputs of length with
output length . Fix and . Construct hash function

 as follows:

 remains unchanged

 receiving input of key and string of length , do:

Gen(1) :n k {0, 1}n
′
s←Gen (1)H

n

Mac :′ k, s m ∈ {0, 1}∗

t =: H ((k ⊕s opad)∣∣H ((k ⊕s ipad)∣∣m))

Vrfy :′ k, s m ∈ {0, 1}∗ t

1

t = H ((k ⊕s opad)∣∣H ((k ⊕s ipad)∣∣m))

(Gen,h) n+ n′ ≥ 2n
n ℓ ≤ n′ IV ∈ {0, 1}n

(Gen,H)

Gen :

H : s x ∈ {0, 1}∗ L < 2ℓ

CMSC456 Course Material 28

1. Append a to , followed by enough zeros that the length
of the resulting string is less than a multiple of . Then
append , encoded as an -bit string. Parse the resulting
string as the sequence of -bit blocks .

2. Set .

3. For , compute .

4. Output .

If is collision-resistant, then so is . Explained simply, we
are breaking the input up into respective chunks and running each of these
chunks through the fixed length hash function, using a variation of chained
CBC-Mode.

Likelihood of Collision
Given a positive integer , say that some elements
are chosen uniformly an d independently from a set of size . We can then
assert that

PKCS #7 Encoding
The purpose of this encoding is to ensure that messages encoded using a block
cipher encryption scheme are less succeptible to tampering or forgery, boosting
the integrity and decreasing the malleability of the scheme.

Sender:

1 x

ℓ n′

L ℓ
n′ x , ...,x1 B

z =0 : IV

i = 1, ...,B z =i : h (z ∣∣x)s
i−1 i

zB

(Gen,h) (Gen,H)

N q ≤ 2N y ,…,y1 q

N

≤
4N

q ∗ (q− 1)
1 − e ≤−q(q−1)/2N coll(q,N) ≤

2N
q ∗ (q− 1)

CMSC456 Course Material 29

Assume message is an integral # of bytes

Let be the block length in bytes of the cipher

Let be the number of bytes that need to be appended to the message
to get length as multiple of L

; note

Append (encoded in 1 byte), times

I.e. if 3 bytes of padding are needed, append

I.e. if 4 bytes of padding are needed, append

Receiver:

Extract the final number from the the Encoded Data. This number will be
interpreted as . This is why must always be , even if our message
already evenly fits into the block length. The receiver must be able to
unambiguously read the amount of padding. If it expects to read the padding
amount and we instead see the unpadded ciphertext, things would go wrong.

Use CBC-Mode decryption to obtain the encoded data

Say the final byte of encoded data has value

If or return ‘error’

If final bytes of the encoded data are not all equal to , return ‘error’

Otherwise, strop off final bytes of the encoded data, and output what
remains as the message

Padding Oracles
By understanding the definition of PKCS #7 Encoding, we can systematically
approach the violation of a scheme through what at first appears to be a trivial
leakage of information. So long as the ‘Padding Oracle’ tells us whether a given
ciphertext has proper formatting, we can actually decode the entirety of the
message. Knowing that neither method we’ve discussed for block ciphers are
CCA-Secure, this should make sense. In both cases, we can devise a
methodology for producing predictable changes to the final block of decrypted
data, thus giving us the opportunity to modify the padding content. By finding the

L

b > 0

1 ≤ b ≤ L b = 0

b b

0x030303

0x04040404

b b ≥ 1

b

b = 0 b > L

b b

b

c

CMSC456 Course Material 30

number of padding bytes through trial and error, we can then create modifications
that increase this number, moving on to the previous bit as the bit to modify.
Through some clever XORing, we can uncover the entirety of the plaintext this
way.

Formal Assumptions

The Factoring Assumption
Let be a PPT algorithm that, on input , outputs where

 and are -bit prime numbers. This is allowed to fail with
probability.

Here we define an experiment in which an attacker is given an integer and
is asked to deduce the prime factorization that produced the number.

1.

2. is given and outputs

3. The output of the experiment is defined to be , returning
 otherwise.

Note that if the experiment evaluates to , .

The Factoring Assumption states that for all PPTs there exists a such that

RSA Assumption
Given a modulus and an integer relatively prime to , we know that
exponentiation to the th power modulo is a permutation. Therefore for any

 we can define to be the unique element of that
yields when raised to the th power modulo .

Informally, our task is to compute for a modulus of unknown factorization.

GenModulus 1n (N,p, q)
N = pq p, q n negl

A N

Factor (n) :A,GenModulus

(N,p, q) ← GenModulus(1)n

A N p , q >′ ′ 1

1 ⟺ p ∗′ q =′ N

0

1 {p , q } =′ ′ {p, q}

A negl

Pr[Factor (n) =A,GenModulus 1] ≤ negl(n)

N e > 2 ϕ(N)
e N

y ∈ ZN∗ [y1/e mod N] ZN∗
y e N

x = [y1/e mod N] ⟺ x =e [y mod N]

x N

CMSC456 Course Material 31

Let be a PPT algorithm that, given input outputs a modulus that
is the product of two -bit primes, as well as two integers where
and and . This is allowed to fail with

 probability.

Here we define an experiment in which the attacker is given modulo ,
exponent , and a uniformly chosen , and asked to produce the value
which, when raised to the th power produces .

1.

2. Choose a uniform

3. is given and outputs

4. The output of the experiment is defined to be ,
returning otherwise.

The RSA Assumption states that for all PPTs there exists a such that

Discrete-Logarithm / Diffie-Hellman Assumptions
Let denote a generic PPT algorithm for group generation. Given input of size

, outputs a description of a cyclic group as well as its order where
 and a generator . Assume that we can perform group operations

and check if a given bit-string is an element of in PPT. Despite all cyclic groups
of the same order being isomorphic (comprised of the same elements), their
representation will determine the complexity of the operations.

Here we define an experiment in which the attacker is given the cyclic group
, its order , its generator , and a uniformly selected member of . The
attacker’s goal is to find a value such that . In other words, to what
power is the generator raised such that it produces the uniformly chosen value

? The value is guaranteed to exist since all values in are found by raising
to some power .

GenRSA 1n N

n e,d e,d > 1
GCD(e,ϕ(N)) = 1 ed = [1 mod ϕ(N)]

negl

A N

e y ∈ ZN∗ x

e [y mod N]

RSAinv (n) :A,GenRSA

(N, e,d) ← GenRSA(1)n

y ∈ ZN∗

A (N, e,y) x ∈ Zn∗

1 ⟺ x =e [y mod N]
0

A negl

Pr[RSAinv (n) =A,GenRSA 1] ≤ negl(n)

G

1n G G q

∣∣q∣∣ = n g ∈ G
G

A G
q g h ∈ G

x g =x h

g

h x G g

mod q

DLog (n) :A,G

CMSC456 Course Material 32

1.

2. Choose a uniform

3. is given and outputs some

4. The output of the experiment is defined to be , returning
otherwise.

The DLog Assumption states that for all PPTs there exists a such that

Encryption Schemes

Private-Key Encryption

Formal Definition for Private Key Encryption
A private-key encryption scheme contains three probabilistic functions,

 such that:

 we assume that this key satisfies .

 where

 where or an error, denoted

We require, simply, that

If, for some reason, we specify the Message Space () to be
, we then say that the set of these functions can be referred to as a

fixed length private key encryption scheme of length .

We also make a few assumptions moving forwards:

 is actually deterministic

Calls to are probabilistically independent from one another

We assume all encryption schemes are stateless, like the one above,
unless specified otherwise

One-Time Pad

(G, q, g) ← G(1)n

h ∈ G
A (G, q, g,h) x ∈ Zq

1 ⟺ g =x h 0

A negl

Pr[DLog (n) =A,G 1] ≤ negl(n)

Gen, Enc,& Dec

k ←Gen(1)n ∣k∣ ≥ n

c← Enc (m)k m ∈ {0, 1}∗

m←Dec (c)k m ∈ {0, 1}∗ ⊥

m = Dec (Enc (m))k k

M m ∈
{0, 1}ℓ(n)

ℓ(n)

Dec

Enc

CMSC456 Course Material 33

Only to be used with a given key one time, the One-Time Pad specifies a
means to achieve perfect secrecy in communication at the cost of the
requirement that .

Let

: choose a uniform key

Public-Key Encryption

Plain Rivest-Shamir-Adleman (RSA) Scheme
Before fortifying it, we first consider an insecure “plain” RSA encryption
scheme.

Here, we define as it is referenced in the RSA Assumption.

1.

2.

3. Choose some such that

4. Compute

5. Return

Now, with in hand, we define the public key encryption scheme as
follows:

 on input run . is the public
key. is the private key.

 on input a public key and a message ,
compute the ciphertext .

 on input a private key and a ciphertext ,
compute the message .

∣k∣ = ∣m∣

M = {0, 1}n

Gen k ∈ {0, 1}n

Enc (m) =k k ⊕m

Dec (c) =k k ⊕ c

GenRSA

GenRSA :

(N,p, q) ← GenModulus(1)n

ϕ(n):= (p − 1) ∗ (q− 1)

e > 1 GCD(e,ϕ(N)) = 1

d := [e−1 mod ϕ(N)]

(N, e,d)

GenRSA

Gen : 1n (N, e,d) ← GenRSA(1)n ⟨N, e⟩
⟨N,d⟩

Enc : pk = ⟨N, e⟩ m ∈ ZN∗
c := [me mod N]

Dec : sk = ⟨N,d⟩ c ∈ ZN∗
m := [cd mod N]

CMSC456 Course Material 34

If the message is not chosen uniformly from , we risk exposing information
about the message. Moreover, this algorithm is deterministic and so by
definition cannot be CPA-Secure.

Diffie-Hellman key-exchange protocol
The Diffie-Hellman key-exchange protocol is radical in that it allows for the
exchange of secret keys over an insecure channel, such as the public internet.

We assume we are given , a PPT algorithm that when given input outputs
a description of a cyclic group , its order (where), and a
generator .

The protocol is defined formally as follows:

1. Alice performs

2. Alice chooses a uniform and computes .

3. Alice sends to Bob.

4. Receiving , Bob chooses a uniform and computes
. Bob sends to Alice and outputs the key .

5. Alice receives and outputs the key .

We can see the protocol is correct and that both parties arrive at the same
value via the following relation:

ZN∗

G 1n

G q ∣∣q∣∣ = n

g ∈ G

(G, q, g) ← G(1)n

x ∈ Zq h :=A gx

(G, q, g,h)A

(G, q, g,h)A y ∈ Zq
h :=B gy hB k :=B hA

y

hB k :=A hB
x

k =B h =A
y (g) =x y gxy

k =A h =B
x (g) =y x gxy

CMSC456 Course Material 35

Attacking the protocol:

Here, we define an experiment in which keys are exchanged. An attacker is
given a either a uniformly chosen bit-string of length , or the real key that
was generated during execution. If the attacker is unable to distinguish the two
with better than random probability, the scheme is secure.

1. Both parties holding execute the protocol . This produces a transcript
 containing all messages sent by both parties as well as a key

output by each of the parties

2. A uniform bit is chosen. If , set , otherwise

choose a uniform .

3. is given and and outputs a bit .

A graphical representation of the formalized protocol

A

n k

KE (n) :A,Π
eav

1n Π
trans k

b ∈ {0, 1} b = 0 :=k̂ k

∈k̂ {0, 1}n

A trans k̂ b′

CMSC456 Course Material 36

4. The output of the experiment is defined to be , returning
otherwise.

The exchange protocol is considered secure in the presence of an
eavesdropper if for all PPTs there exists a such that

El Gamal Encryption
Taher El Gamal realized that the Diffie-Hellman key-exchange protocol could
be repurposed as a full public key encryption scheme, rather than for simply
choosing a key . To do this, we perform our operations as before. Once a key

 is agreed upon, Bob is able to encrypt a message simply by
sending to Alice, who can easily recover using her knowledge of .
By extension, we argue that the eavesdropper learned nothing about .

This scheme is used in a symmetric key exchange.

 On input run to obtain . Then choose a uniform
 and compute . The public key is and the

private key is . The message space is .

 Given a public key and a message ,
choose a uniform and output the ciphertext .

 Given a private key and a ciphertext ,
output .

To showcase that this is a successful scheme, let
where . Then consider the equivalence

1 ⟺ b =′ b 0

A negl

Pr[KE (n) :=A,Π
eav 1] ≤ +

2
1

negl(n)

k

k m ∈ G
k ∗m m k

m

Gen : 1n G(1)n (G, q, g)
x ∈ Zq h := gx ⟨G, q, g,h⟩

⟨G, q, g,x⟩ G

Enc : pk = ⟨G, q, g,h⟩ m ∈ G
y ∈ Zq ⟨g ,h ∗y y m⟩

Dec : sk = ⟨G, q, g,x⟩ ⟨c , c ⟩1 2

:=m̂ c /c2 1
x

⟨c , c ⟩ =1 2 ⟨g ,h ∗y y m⟩
h = gx

=m̂ =
c1
x

c2 =
(g)y x

h ∗my

=
gxy

(g) ∗mx y

=
gxy

g ∗mxy

m

