
Midterm 1 Content

Insertion Sort w/ Sentinel

Code
A[0] <- -∞

for i <- 2 to n do

 t <- A[i]

 j <- i - 1

 while A[j] > t do

 A[j+1] <- A[j]

 j <- j-1

 A[j+1] <- t

Comparisons

Exchanges

Insertion Sort w/out Sentinel

Code
for i <- 2 to n do

 t <- A[i]

 j <- i - 1

 while j > 0 && A[j] > t do

 A[j+1] <- A[j]

 j <- j-1

 A[j+1] <- t

Comparisons

Exchanges
Same as with Sentinel

Bubble Sort

Code
for i <- n downto 2 do

 for j <- 1 to i - 1 do

 if A[j] > A[j+1] do

 A[j] <-> A[j+1]

Comparisons

Exchanges

Sift for Max-Heap

Code
func sift(A, i, n) do

 l <- 2i // Child1

 r <- 2i + 1 // Child2

 M <- i // Maximum

 if l <= n && A[l] > A[i] do

 M <- l

 if r <= n && A[r] > A[i] do

 M <- r

 if M != i do

 A[i] <-> A[M]

 sift(A, M, n)

 return A

Comparisons (i=0)

Exchanges (i=0)

Max-Heapify Random Array

Code
for i <- ⌊n/2⌋ downto 1 do

 sift(A, i, n)

Comparisons

Exchanges

Sort Max-Heap

Code
for i <- n downto 2 do

 A[i] <-> A[1]

 sift(A, 1, n)

Comparisons

Exchanges

Max Continuous Sum

Code
M <- 0; S <- 0

for i <- 1 to n do

 S <- max(S+A[i], 0)

 M <- max(M, S)

Comparisons

Exchanges

Funny Log Thing:
Combination & Permutations

Combinations
with

Repetition:

Combinations
without

Repetition:

Permutations
with

Repetition:

Permutations
without

Repetition:

good luck

Selection

Code
func selection(s, e, k, A[]) do

 if s >= e do

 exit func

 pi <- (s...e).rand() or approx_median(A)

 A[pi] <-> A[s] // Move pivot to start

 q <- partition(s, e, A)

 if k < q do

 selection(s, q-1, k, A)

 else if k > q do

 selection(q, e, k, A)

 else

 return A[k]

Recurrences (Random Pivot)

Quicksort

Code
func quicksort(s, e, A[]) do

 if s > e do

 exit func

 pi <- (s...e).rand() or approx_median(A)

 A[pi] <-> A[s] // Move pivot to start

 q <- partition(s, e, A)

 quicksort(s, q-1, A)

 quicksort(q, e, A)

Recurrences (Random Pivot)

Approximate Median

M

use a known sort (ie bubble)
for each colum

recurse
to find
median
of
medians

partition in len(col)-1
comparisons

Size:

unkown

>=median

<=median

Key:

Bounds and Sums

Graph

integrals
overestimate

just an
example

Even Splitting

Optimal Splitting

Expand and derivate with
respect to ; set result
equal to 0 to find local
minima / maxima / optimal

bounds.

Methodology
In all of these cases,
replace the value being
summed with the lower or
upper bound to obtain

approximations.

Karatsuba’s Fast Multiplication Algorithm

ab and cd are numbers
of n digits 0000

+0000
TTTT

TTTT
UUUU

UUUU

(no addition)

 00 00

+00 00

00 00

VVVV
WWWW
XXXX

additions

TTTT

TT

UUUU

UU
+00 00
XXXX

YYYY
additions

Mathematics

Recurrence Solution

tree body leaves

Midterm 2 Content

you got this queen

Merge

Code
func merge(A[], B[]) do

 C <- []

 while len(A) > 0 && len(B) > 0 do

 if A.head() <= B.head() do

 C.append(A.head())

 A.drophead()

 else do

 C.append(B.head())

 B.drophead()

 while len(A) > 0 do

 C.append(A.head())

 A.drophead()

 while len(B) > 0 do

 C.append(B.head())

 B.drophead()

 return C

Comparisons (len(A)=len(B)=n/2)

Mergesort

Code
func mergesort(s, e, A[]) do

 if s >= e do

 exit func

 c = ⌊(s+e)/2⌋

 X <- mergesort(s, c, A[])

 Y <- mergesort(c+1, e, A[])

 return merge(X, Y)

Recurrences

Solution (worst case)

Layer Tree Method

Body

Leaves

Countingsort

Code (values in (0...k-1))
func countingsort(A[]) do

 C = array of k zeros

 for i in (1...n) do

 C[A[i]] += 1

 t <- 0

 for i in (0...k-1) do

 C[i] <- C[A[i]] + 1

 for j in (n...1) do

 B[C[A[j]]] <- A[j]

 C[A[j]] <- C[A[j]] - 1

 return B

Comparisons & Exchanges

Bucketsort

Code
func bucketsort(A[]) do

 for i in (1...n) do

 solve A[i]’s bucket

 store A[i] in bucket

 concatenate bucket contents

Comparisons & Exchanges

Radixsort

Code
func radixsort(A[]) do

 for each digit

 bucketsort(digit)

Comparisons & Exchanges

Midterm 2 Content - Continued

you are slay mama boots

Depth First Search

Graph

1
1

1

23

44
45

5
5

6

S

Properties
visited = [False, n times]

function DFS(G,x):

	 visited[x] <- True

 	for each vertex y adjacent x do

 	 if visited[y] == False do

 			DFS(G,y)

DFS(G,s)

Run Time

Breadth First Search

Graph
3 3

3

3

2

2

2

2

2
1

11
S

Code
func BFS(G, s) do

 // Unprocessed Vertices

 queue <- [s]

 // Discovered Vertices

 D <- [False, n times]

 D[s] <- TRUE

 while len(queue) > 0 do

 u = queue.pop()

 for each vertex v adjacent u do

 if D[v] == False do

 queue.push(v)

 D[v] <- True

 // Check something

Run Time

Dijkstra

Goal
Discover the shortest path between an origin point and all
other nodes in a weighted graph. AKA The Shortest Path

Tree.

Code
func dijkstra(G, s) do

 dist <- [∞, n times]

 pred <- [NULL, n times]

 S <- []

 dist[s] <- 0

 while len(S) != n do

 x <- vertex in G not including S with lowest weight

 for each edge attached to x do

 y <- the connected vertex

 if dist[x] + edge.weight < dist[y] do

 dist[y] <- dist[x] + (Weight of Edge x,y)

 pred[y] <- x

 S.append(x)

 return pred

Adjacency Matrix Adjacency List

Prim

Goal
Discover the Minimum Spanning Tree (MST) of a weighted graph.

Code
func prim(G) do

 let s <- arbitrary starting vertex

 T <- []

 U <- [s]

 while U != V do

 (u, v) <- lowest cost edge where u ∈ U and v ∈ (V - U)

 T <- T ∪ (u, v)

 U <- U ∪ v

Adjacency Matrix Min-Heap for Edges

Kruskal

Goal
Discover the Minimum Spanning Tree (MST) of a

weighted graph.

Code
func kruskal(G) do

 let EX <- the edges of the graph, sorted

 T <- []

 for each edge (u, v) in EX do

 if u and v are not part of the same tree do

 T.append((u, v))

Runtime
For a graph with E edges and V vertices, Kruskal's
algorithm can be shown to run in O(E log E) time,
or equivalently, O(E log V) time, all with simple

data structures.

Final Content

Parallel Computing Models

Chain Ring Mesh Torus

Tree Star Cube Hypercube

Bloom Filters

Visualization

1 1

s

hash

new element

k outputs

Analysis (x=existing elements)

Bit is
Zero

Zobrist Hashing

Methodology
Assign a unique bit string
identifier to each unique board
piece. When the state of one board
piece changes, XOR it’s existing
position with the existing hash to
remove its existing position from
the hash by the magical property of
XOR. Then, XOR its new position
with the hash to get the new board
state. Setup may be expensive but
all future board moves will run in
constant time (2 * XOR).

Random Numbers

Linear Congruential Generator
This methodology is limited because
a, c, and m must all be chosen very
carefully. Even still, the tree of
possible outcomes may not be evenly
weighted, leading some outputs to
be more prevalent than others by

necessity.

Middle Square
Simply square a number and use its
middle digits as the seed for the

next number in the sequence.

NP

Show NP
To show that an algorithm is in NP,
the simplest methodology is to show
that verifying a possible solution,
called a ‘certificate’, can be done
in polynomial time.

Decision Version
The decision version of an
optimization problem should be a
task of comparable computational
complexity, yet only outputs a Yes/
No response. It’s input is
identical to the optimization
version, seldom a variable k which
represents the axis being
optimized.

To show that decision follows from
optimization time, use the output
of the optimization problem,
determine the k associated with it,
knowing this is the optimal k.
Finally showcase that this output
is correct for the given k.

Optimization Version
The optimization verson of a
problem outputs the actual solution
in question. Its input is identical
to decision, seldom the variable k
which is absent.

To show that optimization follows
from decision, use the output of
the decision problem over and over
to determine the optimal k. Then,
run the decision version with that
constant k and a modified input
over and over until the true
solution can be deduced.

Parallel Analysis

Speedup and Efficiency

An algorithm is only
considered “Efficient”

iff

Note:

Final Content

