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Insertion Sort w/ Sentinel

Code
A[0] <- -∞

for i <- 2 to n do

    t <- A[i]

    j <- i - 1

    while A[j] > t do

        A[j+1] <- A[j]

        j <- j-1

    A[j+1] <- t

Comparisons

Exchanges

Insertion Sort w/out Sentinel

Code
for i <- 2 to n do

    t <- A[i]

    j <- i - 1

    while j > 0 && A[j] > t do

        A[j+1] <- A[j]

        j <- j-1

    A[j+1] <- t

Comparisons

Exchanges
Same as with Sentinel

Bubble Sort

Code
for i <- n downto 2 do

    for j <- 1 to i - 1 do

        if A[j] > A[j+1] do

            A[j] <-> A[j+1]

Comparisons

Exchanges

Sift for Max-Heap

Code
func sift(A, i, n) do

    l <- 2i     // Child1

    r <- 2i + 1 // Child2

    M <- i      // Maximum

    if l <= n && A[l] > A[i] do

        M <- l

    if r <= n && A[r] > A[i] do

        M <- r

    if M != i do

        A[i] <-> A[M]

        sift(A, M, n)

    return A

Comparisons (i=0)

Exchanges (i=0)

Max-Heapify Random Array

Code
for i <- ⌊n/2⌋ downto 1 do

    sift(A, i, n)

Comparisons

Exchanges

Sort Max-Heap

Code
for i <- n downto 2 do

    A[i] <-> A[1]

    sift(A, 1, n)

Comparisons

Exchanges

Max Continuous Sum

Code
M <- 0; S <- 0

for i <- 1 to n do

    S <- max(S+A[i], 0)

    M <- max(M, S)

Comparisons

Exchanges

Funny Log Thing:
Combination & Permutations

Combinations 
with 

Repetition:

Combinations 
without 

Repetition:

Permutations 
with 

Repetition:

Permutations 
without 

Repetition:

good luck





Selection

Code
func selection(s, e, k, A[]) do

    if s >= e do

        exit func

    pi <- (s...e).rand() or approx_median(A)

    A[pi] <-> A[s] // Move pivot to start

    q <- partition(s, e, A)

    if k < q do

        selection(s, q-1, k, A)

    else if k > q do

        selection(q, e, k, A)

    else

        return A[k]

Recurrences (Random Pivot)

Quicksort

Code
func quicksort(s, e, A[]) do

    if s > e do

        exit func

    pi <- (s...e).rand() or approx_median(A)

    A[pi] <-> A[s] // Move pivot to start

    q <- partition(s, e, A)

    quicksort(s, q-1, A)

    quicksort(q, e, A)

Recurrences (Random Pivot)

Approximate Median

M

use a known sort (ie bubble) 
for each colum

recurse 
to find 
median 
of 
medians

partition in len(col)-1 
comparisons

Size:

unkown

>=median

<=median

Key:

Bounds and Sums

Graph

integrals 
overestimate

just an 
example

Even Splitting

Optimal Splitting

Expand and derivate with 
respect to  ; set result 
equal to 0 to find local 
minima / maxima / optimal 

bounds.

Methodology
In all of these cases, 
replace the value being 
summed with the lower or 
upper bound to obtain 

approximations.

Karatsuba’s Fast Multiplication Algorithm

ab and cd are numbers 
of n digits  0000


+0000
TTTT

TTTT
UUUU

UUUU

(no addition)

 00 00

+00 00

00 00

VVVV
WWWW
XXXX

additions

TTTT

TT

UUUU


UU
+00 00
XXXX

YYYY
additions

Mathematics

Recurrence Solution

tree body leaves

Midterm 2 Content

you got this queen



Merge

Code
func merge(A[], B[]) do

    C <- []

    while len(A) > 0 && len(B) > 0 do

        if A.head() <= B.head() do

            C.append(A.head())

            A.drophead()

        else do

            C.append(B.head())

            B.drophead()

    

    while len(A) > 0 do

        C.append(A.head())

        A.drophead()

    while len(B) > 0 do

        C.append(B.head())

        B.drophead()



    return C

Comparisons (len(A)=len(B)=n/2)

Mergesort

Code
func mergesort(s, e, A[]) do

    if s >= e do

        exit func

    c = ⌊(s+e)/2⌋

    X <- mergesort(s, c, A[])

    Y <- mergesort(c+1, e, A[])

    return merge(X, Y)

Recurrences

Solution (worst case)

Layer Tree Method

Body

Leaves

Countingsort

Code (values in (0...k-1))
func countingsort(A[]) do

    C = array of k zeros

    for i in (1...n) do

        C[A[i]] += 1

    t <- 0

    for i in (0...k-1) do

        C[i] <- C[A[i]] + 1



    for j in (n...1) do

        B[C[A[j]]] <- A[j]

        C[A[j]] <- C[A[j]] - 1

  

    return B

Comparisons & Exchanges

Bucketsort

Code
func bucketsort(A[]) do

    for i in (1...n) do

        solve A[i]’s bucket

        store A[i] in bucket

    concatenate bucket contents

Comparisons & Exchanges

Radixsort

Code
func radixsort(A[]) do

    for each digit

        bucketsort(digit)

Comparisons & Exchanges

Midterm 2 Content - Continued

you are slay mama boots



Depth First Search

Graph

1
1

1

23

44
45

5
5

6

S

Properties
visited = [False, n times]

function DFS(G,x):

	   visited[x] <- True

   	for each vertex y adjacent x do

   	    if visited[y] == False do

         			DFS(G,y)

DFS(G,s)

Run Time

Breadth First Search

Graph
3 3

3

3

2

2

2

2

2
1

11
S

Code
func BFS(G, s) do

    // Unprocessed Vertices

    queue <- [s]

    // Discovered Vertices

    D <- [False, n times]

    D[s] <- TRUE

    while len(queue) > 0 do

        u = queue.pop()

        for each vertex v adjacent u do

            if D[v] == False do

                queue.push(v)

                D[v] <- True

                // Check something

Run Time

Dijkstra

Goal
Discover the shortest path between an origin point and all 
other nodes in a weighted graph. AKA The Shortest Path 

Tree.

Code
func dijkstra(G, s) do

    dist <- [∞, n times]

    pred <- [NULL, n times]

    S <- []

    dist[s] <- 0

    while len(S) != n do

        x <- vertex in G not including S with lowest weight

        for each edge attached to x do

            y <- the connected vertex

            if dist[x] + edge.weight < dist[y] do

                dist[y] <- dist[x] + (Weight of Edge x,y)

                pred[y] <- x

        S.append(x)



    return pred

Adjacency Matrix Adjacency List

Prim

Goal
Discover the Minimum Spanning Tree (MST) of a weighted graph.

Code
func prim(G) do

    let s <- arbitrary starting vertex

    T <- []

    U <- [s]

    while U != V do

        (u, v) <- lowest cost edge where u ∈ U and v ∈ (V - U)

        T <- T ∪ (u, v)

        U <- U ∪ v

Adjacency Matrix Min-Heap for Edges

Kruskal

Goal
Discover the Minimum Spanning Tree (MST) of a 

weighted graph.

Code
func kruskal(G) do

    let EX <- the edges of the graph, sorted

    T <- []

    for each edge (u, v) in EX do

        if u and v are not part of the same tree do

            T.append((u, v))

Runtime
For a graph with E edges and V vertices, Kruskal's 
algorithm can be shown to run in O(E log E) time, 
or equivalently, O(E log V) time, all with simple 

data structures.

Final Content



Parallel Computing Models

Chain Ring Mesh Torus

Tree Star Cube Hypercube

Bloom Filters

Visualization

1 1

s

hash

new element

k outputs

Analysis (x=existing elements)

Bit is 
Zero

Zobrist Hashing

Methodology
Assign a unique bit string 
identifier to each unique board 
piece. When the state of one board 
piece changes, XOR it’s existing 
position with the existing hash to 
remove its existing position from 
the hash by the magical property of 
XOR. Then, XOR its new position 
with the hash to get the new board 
state. Setup may be expensive but 
all future board moves will run in 
constant time (2 * XOR).

Random Numbers

Linear Congruential Generator
This methodology is limited because 
a, c, and m must all be chosen very 
carefully. Even still, the tree of 
possible outcomes may not be evenly 
weighted, leading some outputs to 
be more prevalent than others by 

necessity.

Middle Square
Simply square a number and use its 
middle digits as the seed for the 

next number in the sequence.

NP

Show NP
To show that an algorithm is in NP, 
the simplest methodology is to show 
that verifying a possible solution, 
called a ‘certificate’, can be done 
in polynomial time.

Decision Version
The decision version of an 
optimization problem should be a 
task of comparable computational 
complexity, yet only outputs a Yes/
No response. It’s input is 
identical to the optimization 
version, seldom a variable k which 
represents the axis being 
optimized.

To show that decision follows from 
optimization time, use the output 
of the optimization problem, 
determine the k associated with it, 
knowing this is the optimal k. 
Finally showcase that this output 
is correct for the given k.

Optimization Version
The optimization verson of a 
problem outputs the actual solution 
in question. Its input is identical 
to decision, seldom the variable k 
which is absent.

To show that optimization follows 
from decision, use the output of 
the decision problem over and over 
to determine the optimal k. Then, 
run the decision version with that 
constant k and a modified input 
over and over until the true 
solution can be deduced.

Parallel Analysis

Speedup and Efficiency

An algorithm is only 
considered “Efficient” 

iff

Note:

Final Content


